首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Several lines of evidence indicate that a rapid loss of protein kinase C (PKC) activity may be important in the delayed death of neurons following cerebral ischemia. However, in primary neuronal cultures, cytotoxic levels of glutamate have been reported not to cause a loss in PKC as measured by immunoblot and conventional activity methods. This apparent contradiction has not been adequately addressed. In this study, the effects of cytotoxic levels of glutamate, NMDA, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on membrane PKC activity was determined in cortical neurons using an assay that measures only PKC that is active in isolated membranes, which can be used to differentiate active enzyme from that associated with membranes in an inactive state. A 15-min exposure of day 14–18 cortical neurons to 100 µM glutamate, AMPA, or NMDA caused a rapid and persistent loss in membrane PKC activity, which by 4 h fell to 30–50% of that in control cultures. However, the amount of enzyme present in these membranes remained unchanged during this period despite the loss in enzyme activity. The inactivation of PKC activity was confirmed by the fact that phosphorylation of the MARCKS protein, a PKC-selective substrate, was reduced in intact neurons following transient glutamate treatment. By contrast, activation of metabotropic glutamate receptors by trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid was not neurotoxic and induced a robust and prolonged activation of PKC activity in neurons. PKC inactivation by NMDA and AMPA was dependent on extracellular Ca2+, but less so on Na+, although cell death induced by these agents was dependent on both ions. The loss of PKC activity was likely effected by Ca2+ entry through specific routes because the bulk increase in intracellular free [Ca2+] effected by the Ca2+ ionophore ionomycin did not cause the inactivation of PKC. The results indicate that the pattern of PKC activity in neurons killed by glutamate, NMDA, and AMPA in vitro is consistent with that observed in neurons injured by cerebral ischemia in vivo.  相似文献   

2.
In primary cultures of neurons from rat cerebral cortex and neostriatum, excitatory amino acids stimulate the translocation of protein kinase C (PKC) from the cytoplasm to the membrane. In the presence of a physiological concentration of Mg2+ in the extracellular medium, glutamate induces PKC translocation by binding to both N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) excitatory amino acid receptors. Quisqualate translocates the enzyme by stimulating primarily AMPA receptors and possibly metabotropic receptors. NMDA receptor-induced PKC translocation is sodium independent, whereas quisqualate receptor-induced PKC translocation is sodium dependent; none of the agonists is active in the absence of calcium from the extracellular medium. Muscimol does not modify excitatory amino acid stimulation; however, blockade of gamma-aminobutyric acid(A) receptors by bicuculline greatly enhances glutamate-induced PKC translocation. This enhancement is blocked by the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) and by tetrodotoxin.  相似文献   

3.
Abstract : Several lines of evidence indicate that a rapid loss of neuronal protein kinase C (PKC) activity is a characteristic feature of cerebral ischemia and is a necessary step in the NMDA-induced death of cultured neurons. Exposing embryonic day 18 primary rat cortical neurons to 50 μ M NMDA or 50 μ M glutamate for 10 min caused ~80% cell death over the next 24 h, but excitotoxic death was largely averted, i.e., by 70-80%, in cells pretreated with brain-derived neurotrophic factor (BDNF). An 8-h preexposure to BDNF (50-100 ng/ml) maximally protected cortical cells from the effects of NMDA and glutamate, although the transient application of BDNF between 8 and 4 h before NMDA was equally protective. These effects of BDNF were abolished at supralethal, i.e., >100 μ M , NMDA concentrations. It is significant that BDNF pretreatment prevented the inactivation of PKC in cortical cells normally seen 30 min to 2 h following lethal NMDA or glutamate exposure. This BDNF effect did not arise from changes in NMDA channel activity because neither whole-cell NMDA current amplitudes nor increases in intracellular free Ca2+ concentration were altered by the 8-h BDNF pretreatment. Furthermore, BDNF offered no neuroprotection to cells treated with the PKC inhibitors staurosporine (10-20 n M ), calphostin C (1-2.5 μ M ), or GF-109203X (100 n M ) at the time of NMDA addition. These results underscore the importance of PKC inactivation in glutamate-induced neuronal death. They also suggest that BDNF neuroprotection arises, at least in part, via its ability to block the mechanism by which pathophysiological Ca2+ influx through the NMDA receptor causes membrane PKC inactivation.  相似文献   

4.
L-Glutamate, N-methyl-D-aspartic acid (NMDA), quisqualate, and kainate were found to increase endogenous somatostatin release from primary cultures of rat cortical neurons in a dose-dependent manner. The rank order of potency calculated from the dose-response curves was quisqualate greater than glutamate = NMDA greater than kainate, with EC50 values of 0.4, 20, and 40 microM, respectively. Alanine, glutamine, and glycine did not modify the release of somatostatin. The stimulation of somatostatin release elicited by L-glutamate was Ca2+ dependent, was decreased by Mg2+, and was blocked by DL-amino-5-phosphonovaleric acid (APV) and thienylphencyclidine (TCP), two specific antagonists of NMDA receptors. The NMDA stimulatory effect was strongly inhibited by APV in a competitive manner (IC50 = 50 microM) and by TCP in a noncompetitive manner (IC50 = 90 nM). The release of somatostatin induced by the excitatory amino acid agonists was not blocked by tetrodotoxin (1 microM), a result suggesting that tetrodotoxin-sensitive, sodium-dependent action potentials are not involved in the effect. Somatostatin release in response to NMDA was potentiated by glycine, but the inhibitory strychnine-sensitive glycine receptor did not appear to be involved. Our data suggest that glutamate exerts its stimulatory action on somatostatin release essentially through an NMDA receptor subtype.  相似文献   

5.
The possible activation of protein kinase C (PKC) during total cerebral ischemia was investigated in the rat. Translocation of PKC activity from the soluble to the particulate fraction was used as an index of PKC activation. There was a drop in the proportion of particulate PKC activity from 30% for controls to 20% by 30 min of ischemia (p less than 0.01). By 20 min of cardiac arrest, there was a 40% decline of the total cellular PKC activity (p less than 0.01). This was not accompanied by an increase in activator-independent activity, a finding indicating PKC was not being converted to protein kinase M. These data suggest that PKC was not activated during ischemia, but rather that ischemia causes a reduction in cellular PKC activity. Translocation of PKC activity to the particulate fraction was not observed in the cerebral cortex or hippocampus of reperfused brain for up to 6 h of recovery following 11-13 min of total cerebral ischemia. The level of total, soluble, and particulate PKC activity in the cerebral cortex was reduced (p less than 0.05), corresponding to the decrease observed by 15 min of ischemia without reflow. A similar decline in activity was also observed in the hippocampus. No increase in activator-independent activity was observed. These data suggest that PKC was inhibited during cerebral ischemia and that this reduced level of PKC activity was maintained throughout 6 h of recovery. We conclude that pathological activation of PKC was not responsible for the evolution of ischemic brain damage.  相似文献   

6.
Abstract: The neuroprotective actions of remacemide and its anticonvulsant metabolite 1,2-diphenyl-2-propylamine monohydrochloride (desglycinylremacemide; DGR), a low-affinity NMDA receptor antagonist, were investigated using primary rat cortical neuronal cultures. Exposure of cortical cultures to NMDA (100 µ M ) for 15 min killed 85% of the neurons during the next 24 h. This neurotoxicity was blocked in a concentration-dependent manner by adding DGR (5–20 µ M ), but not its remacemide precursor (10–100 µ M ), to the cultures during the time of NMDA exposure. This suggests that the neuroprotective, as well as the anticonvulsant, activity of remacemide is mediated by DGR. Neuroprotective concentrations of DGR also inhibited two of the principal acute effects of NMDA. DGR (5–20 µ M ) prevented the loss of membrane-associated protein kinase C (PKC) activity that developed by 4 h after transient exposure to 100 µ M NMDA and reduced the NMDA-triggered increases in intracellular free Ca2+ concentration ([Ca2+]i) by up to 70%. By contrast, remacemide (50 and 100 µ M ) did not prevent the NMDA-induced loss of PKC activity or reduce the [Ca2+]i responses. These data suggest that DGR protection against NMDA-mediated toxicity in cultured cortical neurons is associated with a reduction of NMDA-triggered [Ca2+]i surges and a prevention of the loss of membrane-associated PKC activity. In addition, the inhibition of NMDA-triggered [Ca2+]i responses by DGR was qualitatively different from the inhibition of these responses by the high-affinity NMDA-receptor antagonists MK-801 and phencyclidine. This may be a consequence of DGR's lower affinity for the NMDA receptor.  相似文献   

7.
Stimulation of inositol phospholipid hydrolysis by transmitter receptor agonists was measured in slices from hippocampus, cerebral cortex, and corpus striatum at various intervals after transient global ischemia in rats. Ischemia was induced through the four-vessel occlusion model. Stimulation of [3H]inositol monophosphate formation by excitatory amino acids was greatly enhanced in hippocampal slices prepared from ischemic rats at 24 h or 7 days after reperfusion. This potentiation was more evident using ibotenic acid and was also observed in cerebral cortex, but not in corpus striatum. This regional profile correlated with the pattern of ischemia-induced neuronal damage observed under our experimental conditions. The enhanced responsiveness to excitatory amino acids was always accompanied by an increase in both basal and norepinephrine-stimulated [3H]inositol monophosphate formation. In contrast, stimulation of [3H]inositol monophosphate formation by carbamylcholine was not modified in hippocampal or cortical slices from ischemic animals.  相似文献   

8.
蛋白激酶C对大鼠缺血海马突触体谷氨酸摄取的调控作用   总被引:1,自引:0,他引:1  
采用大鼠海马脑片体外缺血模型,观察海马突触体内蛋白激酶C(PKC)活性的变化,以及这种变化对突触体谷氨酸(GLU)摄取的影响。结果显示:海马脑片体外“缺血”10min,其突触体内PKC活性基本不变,而缺血30min,突触体内PKC活性显著上升(P<0.01,n=6);非N-甲基-D-天门冬氨酸(NMDA)受体拮抗剂DNQX有效地抑制PKC活性的同时,可降低胞外GLU的堆积,而NMDA受体阻断剂AP_5无作用。进一步实验证明,PKC激动剂PDB浓度依赖性地抑制突触体对3H-GLU的摄取(IC50=131±10μmol/L),此抑制作用可由PKC抑制剂H-7(100μmol/L)抵消。提示脑缺血诱发GLU堆积的作用机理可能是:脑缺血引发钙内流导致GLU过量释放,GLU又通过突触前非NMDA受体激活PKC,抑制其自身摄取,正反馈性加重胞外GLU的堆积。  相似文献   

9.
Wu GJ  Wen ZH  Chang YC  Yang SN  Tao PL  Wong CS 《Life sciences》2006,78(16):1801-1807
Neuropathic pain syndromes respond poorly to opioid treatment. In our previous studies, we found that intrathecal (i.t.) injection of pertussis toxin (PTX) produces thermal hyperalgesia, which is poorly responsive to morphine and is accompanied by an increase in cerebrospinal fluid (CSF) levels of excitatory amino acids (EAAs) and protein kinase C (PKC) activation. In the present study, rats were implanted with an i.t. catheter for drug injection and a microdialysis probe for CSF dialysate collection. On the fourth day after injection of PTX (2 microg, i.t.), there was a significant reduction in the antinociceptive effect of morphine (10 microg, i.t.) which was accompanied by an increase in levels of EAAs. Pretreatment with the PKC inhibitor, chelerythrine (25 microg, i.t.) one hour before morphine injection markedly inhibited both effects. These results suggest that, in PTX-treated rats, PKC plays an important role in inhibiting the morphine-induced spinal EAA release, which might be related to the reduced antinociceptive effect of morphine.  相似文献   

10.
Abstract: The mechanism of the short-term activation by prolactin (PRL) of tyrosine hydroxylase (TH) in tuberoinfundibular dopaminergic neurons was examined in vitro on hypothalamic slices from ovariectomized rats. TH activity (determined by 3,4-dihydroxyphenylalanine accumulation in the median eminence after blockade of decarboxylase with NSD 1055) showed a dose-dependent increase within 2 h of incubation of the hypothalamic slices with PRL. To determine whether a phosphorylation process was involved in this increase in TH activity, we studied the sensitivity of the enzyme to dopamine (DA) feedback inhibition. In control median eminences, two kinetically different forms of TH coexisted, one exhibiting a K 1(DA) value of 29.92 ± 0.49 μ M , the other being × 15-fold more sensitive to DA inhibition with a K 1(DA) of 1.96 ± 0.09 μ M , likely corresponding to a phosphorylated and active form and to a nonphosphorylated and less active form, respectively. After PRL treatment, the TH form of low K 1(DA) remained unaffected, whereas the K 1(DA) of the purported active form of TH increased to 62.6 ± 0.8 μ M , suggesting an increase in the enzyme phosphorylation. This increase in the K I(DA) of TH was selectively prevented by GF 109203X, a potent and selective inhibitor of protein kinase C, but not by a specific inhibitor of protein kinase A or calmodulin. Finally, this action of PRL could be mimicked by 12- O -tetradecan-oylphorbol 13-acetate (a direct activator of protein kinase C). These results suggest that PRL, at the median eminence level, activates TH by increasing the enzyme phosphorylation and that this action may involve an activation of protein kinase C.  相似文献   

11.
Abstract: Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.  相似文献   

12.
Abstract: The expression of MARCKS, a major protein kinase C (PKC) substrate, was examined in the immortalized hippocampal cell line HN33, following differentiation using phorbol esters or retinoic acid. In cells exposed to phorbol esters, MARCKS protein levels were reduced through an apparent PKC-dependent mechanism. Exposure to 1 µ M phorbol 12-myristate 13-acetate (PMA) for 10 min resulted in a rapid loss of PKC activity in the soluble fraction with a concurrent increase in membrane-associated PKC activity. PKC activity was reduced to <20% of control values in both soluble and membrane fractions following 1 h of PMA exposure. Significant reductions in MARCKS protein levels were initially observed in membrane and soluble fractions following PMA exposure for 4 and 8 h, respectively. The reduction in MARCKS protein levels was maximal following 24 h of PMA exposure. MARCKS protein expression was also down-regulated in a dose-dependent manner on exposure of HN33 cells to retinoic acid. In cells exposed to 10 µ M retinoic acid, the MARCKS protein level was reduced in the membrane fraction within 4 h. Reduction of MARCKS protein levels was maximal (>90%) by 12 h with no evidence for any alteration in PKC activity. Reduced levels of MARCKS protein were also observed in the soluble fraction of retinoic acid-exposed cells, but to a significantly lesser extent. Addition of the PKC inhibitor GF109203X blocked the down-regulation of MARCKS protein in PMA-treated cultures but not in retinoic acid-treated cells. These findings suggest that the down-regulation of MARCKS may play an important role in both phorbol ester- and retinoic acid-induced differentiation in cells of neuronal origin.  相似文献   

13.
The actions of the tumor-promoting phorbol ester phorbol dibutyrate were examined, under identical physiological conditions, on three distinct cellular processes in striatal neurons: the distribution of protein kinase C, the carbachol-stimulated generation of [3H]inositol monophosphate, and the KCl-evoked release of gamma-[3H]aminobutyric acid ([3H]GABA). Phorbol dibutyrate induced a rapid (complete in 5 min), dose-dependent, entirely reversible (t0.5 = 15 min) translocation of protein kinase C from cytosol to membrane. On longer exposure to phorbol dibutyrate, membrane-associated protein kinase C returned toward the control level, and total cellular enzyme activity declined markedly. Phorbol dibutyrate also induced the dose-dependent attenuation of carbachol-stimulated [3H]inositol monophosphate production and potentiation of KCl-evoked release of [3H]GABA. The translocation of protein kinase C and the potentiation of KCl-evoked [3H]GABA release were both rapidly reversed following washout of phorbol dibutyrate. In addition, for both processes, the effect of a 1-h exposure to phorbol dibutyrate was markedly less than that observed following a 5-min exposure to the agent. In direct contrast, inhibition of carbachol-stimulated [3H]inositol monophosphate production was not rapidly reversed following washout of phorbol dibutyrate and was actually more pronounced following a 1-h exposure, compared with a 5-min exposure. These findings indicate that some, but not all, of the actions of phorbol dibutyrate are closely associated with the translocation of protein kinase C in striatal neurons in primary culture.  相似文献   

14.
Summary The role of protein kinase C (PKC). during the early development of the inner ear was investigated using organ culture techniques. Otocysts isolated from chick embryos were made quiescent by culturing in the absence of serum for 24 h. The normal process of development could be reactivated by restoration of serum and other growth factors. Addition of phorbol ester (TPA) or synthetic diacylglycerol (OAG) to serum-free medium was also effective in reactivating development and stimulation of DNA synthesis was 41% and 52% of that of serum, respectively. Insulin potentiated the effects of TPA and OAG but had no effect when present alone. Morphogenesis and the associated cell proliferation stimulated by either serum or PKC activation were both inhibited by sphingosine, an in vitro inhibitor of PKC. Inhibition by sphingosine was dose-dependent with a half-maximal inhibitory concentration of about 10 M. The results suggest that PKC activation is an essential step in controlling proliferative growth during early stages of the development of the inner ear.  相似文献   

15.
Activation of muscarinic receptors in human neuroblastoma SH-SY5Y cells with carbachol stimulated a rapid and large increase in early growth response-1 (Egr-1, also called zif268 and NGF1-A) protein levels and DNA binding activity. Egr-1 DNA binding activity was stimulated within 15 min of treatment with carbachol and maintained a maximum 20-fold increase over basal between 1 and 2 h after treatment, and the EC50 was approximately 1 microM carbachol. Carbachol-stimulated Egr-1 DNA binding activity was dependent on protein kinase C, as it was potently inhibited by GF109203X (IC50 approximately 0.1 microM) and was reduced by 85 +/- 5% by down-regulation of protein kinase C. Inhibitors of increases in intracellular calcium levels reduced carbachol-induced Egr-1 DNA binding activity by 25-35%. Carbachol-stimulated activation of Egr-1 was reduced 35% by genistein, a tyrosine kinase inhibitor, and 60% by PD098059, an inhibitor of mitogen-activated protein kinase kinases 1/2 (MEK1/2) that activates extracellular-regulated kinases 1/2 (ERK1/2). A novel inhibitory action was caused by chronic (7-day) administration of sodium valproate but not by two other bipolar disorder therapeutic agents, lithium and carbamazepine. Valproate treatment reduced carbachol-stimulated Egr-1 DNA binding activity by 60% but did not alter carbachol-induced activation of ERK1/2 or p38 or increases in Egr-1 protein levels. These results reveal that muscarinic receptors activate Egr-1 through a signaling cascade primarily encompassing protein kinase C, MEK1/2, and ERK1/2 and that valproate substantially inhibits Egr-1 DNA binding activity stimulated by carbachol or protein kinase C.  相似文献   

16.
Basic fibroblast growth factor (bFGF) is a well-characterized peptide hormone that has mitogenic activity for various cell types and elicits a characteristic set of responses on the cell types investigated. In this report we confirmed that bFGF is a potent mitogen for rat brain-derived oligodendrocyte (OL) precursor cells as well as for differentiated OL in secondary culture. bFGF was shown to induce expression of the protooncogene c-fos in OL. The role of protein kinase C (PKC) in mediating bFGF-stimulated proliferation as well as c-fos expression in OL was investigated. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated c-fos expression but did not trigger cell proliferation. When PKC was down-regulated by pretreatment of OL with PMA for 20 h, the bFGF-mediated stimulations of OL proliferation and c-fos mRNA expression were still observed, whereas the induction of c-fos mRNA by PMA was totally inhibited. These data demonstrate that the bFGF mitogenic signaling pathway in OLs does not require PKC. On the other hand, bFGF was found to stimulate specifically the phosphorylation of a limited number of PKC substrates in oligodendroglial cells, including the MARCKS protein. The bFGF-dependent phosphorylation of MARCKS protein was totally inhibited when PKC was first down-regulated, indicating that the phosphorylation of this protein is PKC dependent. Tryptic digestion of the phosphorylated MARCKS protein revealed that bFGF stimulated specifically the phosphorylation of the MARCKS protein on a single phosphopeptide. We provide evidence that bFGF also stimulated fatty acylation of the MARCKS protein, which might explain the observed specific bFGF-dependent phosphorylation of this protein in OL. We propose that bFGF-dependent fatty acylation and phosphorylation of the MARCKS protein are not essential for the transduction of the bFGF mitogenic signal but are probably linked to differentiation processes elicited by bFGF on OL.  相似文献   

17.
Abstract: Exposure of human SK-N-MC neurotumor cells to 4β-phorbol 12-myristate 13-acetate (PMA) increased isoproterenol stimulation of cyclic AMP levels by severalfold. This potentiation was blocked by inhibitors of protein kinase C (PKC) and did not occur in cells in which PKC had been down-regulated. PMA treatment also enhanced the stimulation by dopamine, cholera toxin, and forskolin. Thus, the effect of PMA on the adenylylcyclase system was postreceptor and involved either the guanine nucleotide binding regulatory (G) proteins or the cyclase itself. As PMA treatment did not impair the inhibition of isoproterenol stimulation by neuropeptide Y, an involvement of the inhibitory G protein Gi was unlikely. Cholate extracts of membranes from control and PMA-treated cells were equally effective in the reconstitution of adenylylcyclase activity in S49 cyc? membranes, which lack the stimulatory G protein subunit G; thus, Gs did not appear to be the target of PMA action. Membranes from PMA-treated cells exhibited increased adenylylcyclase activity to all stimulators including Mn2+ and Mn2+ plus forskolin. In addition, activity was increased when control membranes were incubated with ATP and purified PKC from rat brain. This is consistent with a direct effect of PKC on the adenylylcyclase catalyst in SK-N-MC cells. PMA treatment also resulted in a shift to less sensitivity in the Kact for isoproterenol but not for dopamine or CGP-12177 (a β3-adrenergic agonist) stimulation. Thus, the β1 but not the D1 or β3 receptors were being desensitized by PKC activation. Analysis of SK-N-MC cells by western blotting with antibodies against different PKC isozymes revealed that both the α and ζ isozymes were present in these cells. Whereas PKC-α was activated and translocated from cytosol to membrane by phorbol esters, the ζ isozyme was not. Thus, PKC-α, which has been implicated in desensitization in other cell lines, also appears to potentiate adenylylcyclase activity.  相似文献   

18.
Abstract: Cytoplasmic inclusion bodies that are accumulations of neurofilaments are the pathological hallmark of many neurodegenerative diseases and have been produced in transgenic mice by overexpression of mouse (NF-L and NF-M; light and medium chains, respectively) and human (NF-M and NF-H; medium and heavy chains, respectively) neurofilament subunits. This report describes a neuronal culture model in which human NF-L was overexpressed to produce cytoplasmic accumulations of neurofilaments within cell bodies concomitant with the collapse of the endogenous neurofilament network. Electron microscopy showed that, within accumulations, neurofilaments retained a filamentous structure. The culture model thus provides a novel system in which the effect on neurofilament accumulations of manipulating protein phosphorylation can be studied. Treatment of cells containing neurofilament accumulations with bisindolylmaleimide, a specific protein kinase C inhibitor, resulted in regeneration of the filamentous network; this effect was not due to a change in the level of transfected NF-L expression. These findings lend support to the suggestion that an impairment in the regulation of protein phosphorylation may lead to the accumulation of neurofilaments seen in neurodegenerative disease.  相似文献   

19.
Abstract: Protein kinase C (PKC) activation stimulates release of secreted amyloid precursor protein (APPs) in several cell lines. To ascertain the role of PKC in regulating APP metabolism in vivo, we used an animal model (methylazoxymethanol-treated rats; MAM rats) in which PKC is permanently hyperactivated in selected brain areas, i.e., cortex and hippocampus. A significant decrease in membrane-bound APP concentration was found in synaptosomes derived from cortex and hippocampus of MAM rats, where PKC is up-regulated, with a concomitant increase in APPs production in soluble fractions of the same brain areas. In contrast, in a brain area not affected by MAM treatment (i.e., cerebellum), APP secretion is similar in control and MAM rats, indicating that altered metabolism of APP is restricted to only those areas in which the PKC system is up-regulated. In addition, phorbol esters or H-7 modulate APPs release in hippocampal slices from both control and MAM rats, further supporting an in vivo role for this enzyme in regulating metabolism of mature APP.  相似文献   

20.
Previous studies have shown that norepinephrine is important in the regulation of central angiotensin II receptors, an effect mediated by alpha 1-adrenergic receptors. Because alpha 1-adrenergic stimulation leads to inositol phospholipid hydrolysis and activation of protein kinase C, we have examined a possible role of this enzyme in the regulation of central angiotensin II (Ang II) receptors. In the present study, we have examined the effects of protein kinase C activators, phorbol esters, on the expression of Ang II receptors in neuronal cultures prepared from 1-day-old rat brains. The active phorbol ester phorbol-12-myristate-13-acetate (TPA) caused time- and concentration-dependent increases in the specific binding of [125I]Ang II to its receptors in neuronal cultures of normotensive and spontaneously hypertensive rat brains. The stimulatory effect of TPA on Ang II receptors was apparent within 15 min and reached a maximum between 1 and 2 h. Ang II specific binding had returned to control levels by 24 h. Various phorbol esters increased [125I]Ang II binding in accordance with their order of potency in stimulating protein kinase C activity. Saturation and Scatchard analysis revealed that the phorbol ester-induced increase in [125I]Ang II binding was due to an increase in the number of Ang II receptors. These observations indicate that activation of protein kinase C results in an increased expression of Ang II receptors in neuronal cultures from both normotensive and spontaneously hypertensive rat brains. The results suggest a possible role of phosphorylation in Ang II receptor expression in neuronal cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号