首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the genes involved in the process of protein translocation is important in understanding their structure-function relationships. However, little is known about the signals that govern chlamydial gene expression and translocation. We have cloned a 1.7 kb HindIII-PstI fragment containing the secY gene of Chlamydia trachomatis. The complete nucleotide sequence reveals three open reading frames. The amino acid sequence shows highest homology with Escherichia coli proteins L15, SecY and S13, corresponding to the spc- ribosomal protein operons. The product of the C. trachomatis secY gene is composed of 457 amino acids with a calculated molecular mass of 50 195 Daltons. Its amino acid sequence shows 27.4% and 35.7% identity to E. coli and Bacillus subtilis SecY proteins, respectively. The distribution of hydrophobic amino acids in the C. trachomatis secY gene product is suggestive of it being an integral membrane protein with ten transmembrane segments, the second, third and seventh membrane segments sharing > 45% identity with E. coli SceY. Our results suggest that despite evolutionary differences, eubacteria share a similar protein export apparatus.  相似文献   

2.
Two kinds of truncated human c-myc proteins were produced in Escherichia coli. The human c-myc gene is composed of three exons, exons 2 and 3 having coding capacity for a protein of 439 amino acids. 252 N-terminal amino acids are encoded by exon 2, the C-terminal 187 amino acids being encoded by exon 3. One of the proteins (p42) produced in E. coli corresponds to 342 amino acids from the 98th Gln to the C-terminus, plus 21 amino acids derived from the H-ras gene at the N-terminus. The other (p23) corresponds to 155 amino acids from the 98th Gln to the 252nd Ser, plus five amino acids (Gly-Gly-Thr-Arg-Arg) at the C-terminus, plus 21 amino acids from the H-ras gene at the N-terminus. The p23 protein was produced by using cDNA in which a frame shift occurred at the boundary between exons 2 and 3. We investigated the DNA-binding activity in p42 and p23 proteins. DNA-cellulose column chromatography showed that p42 binds to DNA, whereas p23 does not. This DNA-binding activity of p42 was inhibited by antiserum prepared against p42 but not by antiserum against p23. This indicates that the DNA-binding activity of c-myc protein is localized in the portion encoded by exon 3.  相似文献   

3.
Topological and functional studies on HlyB of Escherichia coli   总被引:4,自引:0,他引:4  
Summary The topology of HlyB, a protein located in the inner membrane of Escherichia coli and involved in the secretion of -haemolysin (HlyA), was determined by the generation of HlyB-PhoA and HlyB-LacZ fusion proteins. The data obtained by this biochemical method together with computer predictions suggest that HlyB is inserted in the cytoplasmic membrane by six stable hydrophobic, -helical transmembrane segments. These segments extend from amino acid positions 158 to 432 of HlyB. The cytoplasmic loops between these transmembrane segments are relatively large and carry an excess of positively charged amino acids, while the periplasmic loops are rather small. In addition to these six transmembrane segments, two additional regions in the 78 N-terminal amino acids of HlyB appear to be also inserted in the cytoplasmic membrane. However, the association of these two segments with the cytoplasmic membrane seems to be less tight, since active PhoA and LacZ fusions were obtained by insertion into the same positions of these segments. A LacZ-HlyAs fusion protein carrying, at the C-terminus of LacZ, the 60-amino acid signal sequence of HlyA was not secreted in the presence of HlyB/HlyD. However, transport of this fusion protein into the cytoplasmic membrane appeared to be initiated, as suggested by the tight association of this protein with the inner membrane. A similar close association of LacZ-HlyAs with the inner membrane was also observed in the presence of HlyB alone but not in its absence. These data suggest that HlyB recognizes the HlyA signal sequence and initiates the transport of HlyA into the membrane.  相似文献   

4.
We present an extended genetic analysis of the previously identified cycH locus in Bradyrhizobium japonicum. Three new open reading frames found in an operon-like structure immediately adjacent to the 3 end of cycH were termed cycJ, cycK and cycL. A deletion mutant (cycHJKL) and biochemical analysis of its phenotype showed that the genes of the cluster are essential for the biogenesis of cellular c-type cytochromes. Mutations in discrete regions of each of the genes were also constructed and shown to affect anaerobic respiration with nitrate and the ability to elicit an effective symbiosis with soybean, both phenotypes being a consequence of defects in cytochrome c formation. The CycK and CycL proteins share up to 53% identity in amino acid sequence with the Rhodobacter capsulatus Ccll and Cc12 proteins, respectively, which have been shown previously to be essential for cytochrome c biogenesis, where-as cycJ codes for a novel protein of 169 amino acids with an Mr of 17857. Localisation studies revealed that CycJ is located in the periplasmic space; it is probably anchored to the cytoplasmic membrane via an N-terminal hydrophobic domain. Based on several considerations discussed here, we suggest that the proteins encoded by the cycHJKL-cluster may be part of a cytochrome c-haem lyase complex whose active site faces the periplasm.  相似文献   

5.
Summary Two-component regulatory systems comprising a sensor and a regulator protein, both with highly conserved amino acid domains, and commonly genetically linked, have been described in a range of bacterial species and are involved in sensing environmental stimuli. We used two oligonucleotide probes matching the postulated coding regions for domains of sensor and regulator proteins respectively in Xanthomonas campestris pathovar campestris (Xcc) to identify possible two-component regulatory systems in Xcc. Two different fragments of Xcc DNA with homology to both of these probes were cloned. The DNA sequence of part of one of these fragments encompassed a potential open reading frame (ORF), the predicted amino acid sequence of which had extensive homology with regulator proteins of two-component regulatory systems. Analysis of the predicted amino acid sequence for the 3 end of an adjacent ORF revealed a very high level of homology with the C-terminal end of sensor proteins. Strains of Xcc with Tn5-induced mutations in the regulator gene were affected in extracellular polysaccharide production, and also in resistance to salt and chloramphenicol. No effects of mutation in the second clone were observed.  相似文献   

6.
This paper describes genes from yeast and mouse with significant sequence similarities to aDrosophila gene that encodes the blood cell tumor suppressor pendulin. The protein encoded by the yeast gene, Srp1p, and mouse pendulin share 42% and 51% amino acid identity withDrosophila pendulin, respectively. All three proteins consist of 10.5 degenerate tandem repeats of 42 amino acids each. Similar repeats occur in a superfamily of proteins that includes theDrosophila Armadillo protein. All three proteins contain a consensus sequence for a bipartite nuclear localization signal (NLS) in the N-terminal domain, which is not part of the repeat structure. Confocal microscopic analysis of yeast cells stained with antibodies against Srp1p reveals that this protein is intranuclear throughout the cell cycle. Targeted gene disruption shows thatSRP1 is an essential gene. Despite their sequence similarities,Drosophila and mouse pendulin are unable to rescue the lethality of anSRP1 disruption. We demonstrate that yeast cells depleted of Srp1p arrest in mitosis with a G2 content of DNA. Arrested cells display abnormal structures and orientations of the mitotic spindles, aberrant segregation of the chromatin and the nuclei, and threads of chromatin emanating from the bulk of nuclear DNA. This phenotype suggests that Srplp is required for the normal function of microtubules and the spindle pole bodies, as well as for nuclear integrity. We suggest that Srp1p interacts with multiple components of the cell nucleus that are required for mitosis and discuss its functional similarities to, and differences fromDrosophila pendulin.  相似文献   

7.
Summary The ptsG gene of Bacillus subtilis encodes Enzyme IIG1c of the phosphoenolpyruvate: glucose phosphotransferase system. The 3 end of the gene was previously cloned and the encoded polypeptide found to resemble the Enzymes IIIGlc of Escherichia coli and Salmonella typhimurium. We report here cloning of the complete ptsG gene of B. subtilis and determination of the nucleotide sequence of the 5 end. These results, combined with the sequence of the 3 end of the gene, revealed that ptsG encodes a protein consisting of 699 amino acids and which is similar to other Enzymes II. The N-terminal domain contains two small additional fragments, which share no similarities with the closely related Enzymes IIGlc and IINag of E. coli but which are present in the IIG1c-like protein encoded by the E. coli malX gene.  相似文献   

8.

Background

Proper phosphate signaling is essential for robust growth of Escherichia coli and many other bacteria. The phosphate signal is mediated by a classic two component signal system composed of PhoR and PhoB. The PhoR histidine kinase is responsible for phosphorylating/dephosphorylating the response regulator, PhoB, which controls the expression of genes that aid growth in low phosphate conditions. The mechanism by which PhoR receives a signal of environmental phosphate levels has remained elusive. A transporter complex composed of the PstS, PstC, PstA, and PstB proteins as well as a negative regulator, PhoU, have been implicated in signaling environmental phosphate to PhoR.

Results

This work confirms that PhoU and the PstSCAB complex are necessary for proper signaling of high environmental phosphate. Also, we identify residues important in PhoU/PhoR interaction with genetic analysis. Using protein modeling and docking methods, we show an interaction model that points to a potential mechanism for PhoU mediated signaling to PhoR to modify its activity. This model is tested with direct coupling analysis.

Conclusions

These bioinformatics tools, in combination with genetic and biochemical analysis, help to identify and test a model for phosphate signaling and may be applicable to several other systems.
  相似文献   

9.
Summary The virD4 gene of Agrobacterium tumefaciens is essential for the formation of crown galls. Analysis of the nucleotide sequence of virD4 has suggested that the N-terminal region of the encoded protein acts as a signal peptide for the transport of the VirD4 protein to the cell membrane of Agrobacterium. We have examined the localization and orientation of this protein in the cell membrane. When the nucleotides encoding the first 30 to 41 amino acids from the N-terminus of the VirD4 protein were fused to the gene for alkaline phosphatase from which the signal sequence had been removed, alkaline phosphatase activity was detectable under appropriate conditions. Immunoblotting with VirD4-specific antiserum indicated that the VirD4 protein could be recovered exclusively from the membrane fraction of Agrobacterium cells. Moreover, when the membrane fraction was separated into inner and outer membrane fractions by sucrose density-gradient centrifugation, VirD4 protein was detected in the inner-membrane fraction and in fractions that sedimented between the inner and outer membrane fractions. By contrast, the VirD4/alkaline phosphatase fusion protein with the N-terminal sequence from VirD4 was detected only in the inner membrane fraction. Treatment of spheroplasts of Agrobacterium cells with proteinase K resulted in digestion of the VirD4 protein. These results indicate that the VirD4 protein is transported to the bacterial membrane and anchored on the inner membrane by its N-terminal region. In addition, the C-terminal portion of the VirD4 protein probably protrudes into the periplasmic space, perhaps in association with some unidentified cellular factor(s).Deceased June 5, 1988  相似文献   

10.
Summary The nucleotide sequence of the Escherichia coli K12 -methylgalactoside transport operon, mgl, was determined. Primer extension analysis indicated that the synthesis of mRNA initiates at guanine residue 145 of the determined sequence. The operon contains three open reading frames (ORF). The operator proximal ORF, mglB, encodes the galactose binding protein, a periplasmic protein of 332 amino acids including the 23 residue amino-terminal signal peptide. Following a 62 nucleotide spacer, the second ORF, mglA, is capable of encoding a protein of 506 amino acids. The amino-terminal and carboxyl-terminal halves of this protein are homologous to each other and each half contains a putative nucleotide binding site. The third ORF, mglC, is capable of encoding a hydrophobic protein of 336 amino acids which is thought to generate the transmembrane pore. The overall organization of the mglBAC operon and its potential to encode three proteins is similar to that of the ara FGH high affinity transport operon, located approximately 1 min away on the E. coli K12 chromosome.  相似文献   

11.
The full-length cDNA of a previously identified Solanum brevidens gene was isolated and characterised. DNA sequence analysis revealed an open reading frame that encodes a hybrid proline-rich cell wall protein of 407 amino acids. The putative protein was designated SbrPRP. The SbrPRP harbours three parts, an N-terminal signal peptide followed by a repetitive proline-rich domain and a cysteine-rich C-terminus resembling non-specific lipid-transfer proteins. The repetitive proline-rich domain contains two repeated motifs, PPHVKPPSTPK and PTPPIVSPP extended with TPKYP and TPKPPS motifs, respectively, at their N- or C-terminal. The SbrPRP gene of the non-tuberising Solanum species, Solanum brevidens, possesses highly homologous counterparts in the tuberising species, Solanum tuberosum (StPRP) and in the related species, Lycopersicum esculentum (TFM7). All three genes are present in single- or low copy number in the corresponding genome. Organ-specific expression of the genes, however, is different in the three solanaceous species.  相似文献   

12.
Summary The nucleotide sequence of the celZ gene coding for a thermostable endo--1,4-glucanase (Avicelase I) of Clostridium stercorarium was determined. The structural gene consists of an open reading frame of 2958 by which encodes a preprotein of 986 amino acids with an Mr of 109000. The signal peptide cleavage site was identified by comparison with the N-terminal amino acid sequence of Avicelase I purified from C. stercorarium culture supernatants. The recombinant protein expressed in Escherichia coli is proteolytically cleaved into catalytic and cellulose-binding fragments of about 50 kDa each. Sequence comparison revealed that the N-terminal half of Avicelase I is closely related to avocado (Persea americana) cellulase. Homology is also observed with Clostridium thermocellum endoglucanase D and Pseudomonas fuorescens cellulase. The cellulose-binding region was located in the C-terminal half of Avicelase I. It consists of a reiterated domain of 88 amino acids flanked by a repeated sequence about 140 amino acids in length. The C-terminal flanking sequence is highly homologous to the non-catalytic domain of Bacillus subtilis endoglucanase and Caldocellum saccharolyticum endoglucanase B. It is proposed that the enhanced cellulolytic activity of Avicelase I is due to the presence of multiple cellulose-binding sites.  相似文献   

13.
Summary An out-of-frame fusion between the penicillinase gene (penP) of Bacillus licheniformis and the -galactosidase gene (lacZ) of Escherichia coli was shown to direct the synthesis of an active -galactosidase with the same electrophoretic mobility as the wild-type protein, both in B. subtilis and E. coli. This synthesis was dependent on translation of the truncated penP gene and appeared to result from translational coupling. The fusion point between penP and lacZ contained the sequence AUAG, in which the UAG and AUA codons were in-frame with the penP and lacZ reading units, respectively. N-terminal amino acid sequence analysis of the -galactosidase protein suggested that, both in B. subtilis and E. coli, reinitiation of translation occurred at the AUA codon present at the gene fusion point.  相似文献   

14.
We have determined the nucleotide sequence of a 3.5 kb segment in the recF region of the Staphylococcus aureus chromosome. The gene order at this locus, dnaA-dnaN-recF-gyrB is similar to that found in the replication origin region of many other bacteria. S. aureus RecF protein (predicted molecular mass 42.3 kDa), has 57% amino acid sequence identity with the Bacillus subtilis RecF protein (42.2 kDa), but only 26% with the Escherichia coli RecF protein (40.5 kDa). We have shown that the S. aureus recF gene partially complements the defect of a B. subtilis recF mutant, but does not complement an E. coli recF strain. The amino acid sequence alignment of seven available RecF proteins (five of them from bacteria of gram-negative origin) allowed us to identify eight highly conserved regions ( to ) and to predict five new conserved regions within the gram-positive group (a to f). We suggest that the basic mechanism of homologous recombination is conserved among free-living bacteria.  相似文献   

15.
Summary The replication initiation protein of the Escherichia coli plasmid R6K is a dual regulator in the control of plasmid copy number, functioning both as a specific initiator and inhibitor of replication. While the biochemical basis of these activities is not known, initiator activity requires binding of the protein to the seven 22 by direct repeats within the -origin region. By deleting C-terminal segments of the coding region, we have found that the N-terminal polypeptides of that are produced, corresponding to the first 117 and 164 amino acids, respectively, retain the negative activity of the bifunctional protein, i.e. these truncated proteins specifically inhibit R6K replication in vivo. These negatively acting polypeptides, however, are incapable of initiating replication in vivo and fail to bind to the -origin of the R6K DNA in vitro. A correspondence between the observed negative activity of the N-terminal peptide and the negative regulatory activity of the intact protein is supported by the finding that point mutations introduced into the 164 amino acid N-terminal peptide that result in a decrease in its inhibitory activity also produce a plasmid high-copy phenotype when these mutations are incorporated into the full-length protein. These findings demonstrate that the negative domain of resides in the N-terminal segment of the protein. Furthermore, the data obtained suggest that inhibition of R6K replication by does not require direct binding to DNA.  相似文献   

16.
An Escherichia coli membrane protein, FtsH, has been implicated in several cellular processes, including integration of membrane proteins, translocation of secreted proteins, and degradation of some unstable proteins. However, how it takes part in such diverse cellular events is largely unknown. We previously isolated dominant negative ftsH mutations and proposed that FtsH functions in association with some other cellular factor(s). To test this proposal we isolated multicopy suppressors of dominant negative ftsH mutations. One of the multicopy suppressor clones contained an N-terminally truncated version of a new gene that was designated fdrA. The FdrA fragment suppressed both of the phenotypes — increased abnormal translocation of a normally cytoplasmic domain of a model membrane protein and retardation of protein export — caused by dominant negative FtsH proteins. The intact fdrA gene (11.9 min on the chromosome) directed the synthesis of a 60 kDa protein in vitro.  相似文献   

17.
Summary Fusion of the alkaline phosphatase gene (phoA) which lacks its own signal peptide sequence to the N-terminal region of hlyA, the structural gene for Escherichia coli haemolysin, leads to active alkaline phosphatase (AP). AP activity depends on the length of the N-terminal region of hlyA. An optimum is reached when 100–200 amino acids of HlyA are fused to PhoA but fusion of as little as 13 amino acids of HlyA to PhoA is sufficient to yield appreciable AP activity. When cells are treated with lysozyme most of the AP activity is found associated with the membrane fraction but a substantial amount is also found in the soluble fraction, most of which may represent, a periplasmic pool of AP. The soluble portion of AP activity is significantly increased when the cells are disrupted by ultrasonication, which indicates that the fusion proteins are only loosely associated with the membrane and that large parts are already located on the outside of the cytoplasmic membrane. The expected fusion proteins were identified in the soluble and the membrane fractions and their amounts in these fractions correlated well with AP activity.  相似文献   

18.
19.
A novel technique was developed which may be generally well suited to the site-specific construction of mutations in Enterobacter agglomerans. The method is based on the observation that E. agglomerans can be cured of a plasmid of the incompatibility group IncQ by cultivation on citrate-containing medium. To test the applicability of this technique, we inserted a kanamycin cassette into the cloned nifB gene, transferred it into E. agglomerans, and selected for recombinants in which the wild-type nifB was replaced by the mutated gene by growing transformants on citrate medium with kanamycin. The nifB mutants with the kanamycin cassette inserted in either orientation showed sequence of nifb. A typical 54-dependent promoter and a consensus NifA binding site were found upstream of nifB. Activation of this promoter by both heterologous and homologous NifA proteins was observed in vivo. The predicted amino acid sequence of the NifB protein showed strong similarity to the NifB sequences of other diazotrophic bacteria. The typical clustering of cysteine residues at the N-terminal end indicates its involvement in Fe-Mo cofactor biosynthesis.  相似文献   

20.
Summary Vitreoscilla hemoglobin is involved in oxygen metabolism of this bacterium, possibly in an unusual role for a microbe. We have isolated the Vitreoscilla hemoglobin structural gene from a pUC19 genomic library using mixed oligodeoxy-nucleotide probes based on the reported amino acid sequence of the protein. The gene is expressed in Escherichia coli from its natural promoter as a major cellular protein. The nucleotide sequence, which is in complete agrecment with the known amino acid sequence of the protein, suggests the existence of promoter and ribosome binding sites with a high degree of homology to consensus E. coli upstream sequences. In the case of at least some amino acids, a codon usage bias can be detected which is different from the biased codon usage pattern in E. coli. The down-stream sequence exhibits homology with the 3 end sequences of several plant leghemoglobin genes. E. coli cells expressing the gene contain greater than fivefold more heme than controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号