首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rossa  Birgit  von Willert  Dieter J. 《Plant Ecology》1999,142(1-2):121-132
Namaqualand, a semi-arid winter rainfall region of South Africa, supports an exceptional diversity of geophytic species. The survey focused on gas exchange reactions and chlorophyll a fluorescence in geophytes with different leaf orientation in relation to environmental variability. Although the above ground life cycle of geophytes can be extremely short, unlike desert annuals, they are not characterized by a high photosynthetic CO2 uptake. Maximum CO2 uptake ranged from 4 to 20 mol CO2 m-2 s-1. Temperature optima of photosynthetic CO2 uptake were comparably low and ranged from 12 to 22°C for eleven species tested, with only one species above 19°C. The decrease of CO2 uptake with rising temperatures was associated with a substantial increase of photorespiration. Net photosynthesis was saturated between 500 and 900 mol photons m-2 s-1 while electron transport through PSII was saturated at higher photon flux densities. At light intensities beyond saturation, a high variability of PSII efficiency occurred. It was highest for horizontal leaves and lowest for upright leaves. However, the maximum quantum yield of PSII (Fv/Fm)remained constant during the course of a day, regardless of leaf orientation. This indicates the absence of photoinhibitory effects and a well protected photosynthetic apparatus. Leaf orientation determined interception of solar radiation and thus leaf temperature which was highest for horizontal leaves. In conclusion, Namaqualand geophytes show photosynthetic characteristics that are well adapted to the mild and generally moist conditions during the growing season.  相似文献   

2.
The diadinoxanthin cycle (DD-cycle) in chromophyte algae involves the interconversion of two carotenoids, diadinoxanthin (DD) and diatoxanthin (DT). We investigated the kinetics of light-induced DD-cycling in the marine diatom Phaeodactylum tricornutum and its role in dissipating excess excitation energy in PS II. Within 15 min following an increase in irradiance, DT increased and was accompanied by a stoichiometric decrease in DD. This reaction was completely blocked by dithiothreitol (DTT). A second, time-dependent, increase in DT was detected 20 min after the light shift without a concomitant decrease in DD. DT accumulation from both processes was correlated with increases in non-photochemical quenching of chlorophyll fluorescence. Stern-Volmer analyses suggests that changes in non-photochemical quenching resulted from changes in thermal dissipation in the PS II antenna and in the reaction center. The increase in non-photochemical quenching was correlated with a small decrease in the effective absorption cross section of PS II. Model calculations suggest however that the changes in cross section are not sufficiently large to significantly reduce multiple excitation of the reaction center within the turnover time of steady-state photosynthetic electron transport at light saturation. In DTT poisoned cells, the change in non-photochemical quenching appears to result from energy dissipation in the reaction center and was associated with decreased photochemical efficiency. D1 protein degradation was slightly higher in samples poisoned with DTT than in control samples. These results suggest that while DD-cycling may dynamically alter the photosynthesis-irradiance response curve, it offers limited protection against photodamage of PS II reaction centers at irradiance levels sufficient to saturate steady-state photosynthesis.Abbreviations CAP chloramphenicol - D1 PS II reaction center protein - DD diadinoxanthin - DD cycle-diadinoxanthin cycle - DT diatoxanthin - DTT dithiothreitol - FCP fucoxanthin chlorophyll a-c protein - Fm maximum fluorescence yield in the dark-adapted state - Fo minimum fluorescence yield in the dark-adapted state - Fm and Fo maximum and minimum fluorescence yields respectively in some light adapted state - Fv maximum variable fluorescence yield in the dark-adapted state - Ik Irradiance at the intercept of the initial slope of the photosynthesis-irradiance curve and the maximum photosynthetic rate - kD first order rate constant for nonradiative de-excitation of excitions in the PS II antenna - kd first order rate constant for non-radiative de-excitation of excitons in the PS II reaction center - kF first order rate constant for fluorescence - kT first order rate constant for exciton transfer to the reaction center - kt first order rate constant for exciton transfer from the reaction center to the antenna - Rubisco ribulose bisphosphate carboxylase - SVm Stern-Volmer quenching coefficient of the maximum fluorescence yield - SVo Stern-Volmer quenching coefficient of the miniximum fluorescence yield - PS II apparent absorption cross-section of PS II - arr average interval between exciton arrival to the PS II reaction center (ms) - rem average interval between electron turnover during photosynthesis in the PS II reaction center (ms) - d the probability that an exciton is non-radiatively dissipated in the reaction center - T the probability that an exciton in the antenna is transferred to the reaction center - t the probability that an exciton is transferred back from the reaction center to the antenna  相似文献   

3.
The role of the xanthophyll cycle in regulating the energy flow to the PS II reaction centers and therefore in photoprotection was studied by measurements of light-induced absorbance changes, Chl fluorescence, and photosynthetic O2 evolution in sun and shade leaves of Hedera canariensis. The light-induced absorbance change at 510 nm (A510) was used for continuous monitoring of zeaxanthin formation by de-epoxidation of violaxanthin. Non-radiative energy dissipation (NRD) was estimated from non-photochemical fluorescence quenching (NPQ).High capacity for zeaxanthin formation in sun leaves was accompanied by large NRD in the pigment bed at high PFDs as indicated by a very strong NPQ both when all PS II centers are closed (F'm) and when all centers are open (F'o). Such Fo quenching, although present, was less pronounced in shade leaves which have a much smaller xanthophyll cycle pool.Dithiothreitol (DTT) provided through the cut petiole completely blocked zeaxanthin formation. DTT had no detectable effect on photosynthetic O2 evolution or the photochemical yield of PS II in the short term but fully inhibited the quenching of Fo and 75% of the quenching of Fm, indicating that NRD in the antenna was largely blocked. This inhibition of quenching was accompanied by an increased closure of the PS II reaction centers.In the presence of DTT a photoinhibitory treatment at a PFD of 200 mol m-2 s-1, followed by a 45 min recovery period at a low PFD, caused a 35% decrease in the photon yield of O2 evolution, compared to a decrease of less than 5% in the absence of DTT. The Fv/Fm ratio, measured in darkness showed a much greater decrease in the presence than in the absence of DTT. In the presence of DTT Fo rose by 15–20% whereas no change was detected in control leaves.The results support the conclusion that the xanthophyll cycle has a central role in regulating the energy flow to the PS II reaction centers and also provide direct evidence that zeaxanthin protects against photoinhibitory injury to the photosynthetic system.Abbreviations F, Fm, Fo, Fv Fluorescence yield at actual degree of PS II center closure, when all centers are closed, when all centers are open, variable fluorescence - NPQ non-photochemical fluorescence quenching - NRD non-radiative energy dissipation - PFD photon flux density - QA primary acceptor PS II  相似文献   

4.
Three light intensity-dependent Chl b-deficient mutants, two in wheat and one in barley, were analyzed for their xanthophyll cycle carotenoids and Chl fluorescence characteristics under two different growth PFDs (30 versus 600 mol photons·m–2 s–1 incident light). Mutants grown under low light possessed lower levels of total Chls and carotenoids per unit leaf area compared to wild type plants, but the relative proportions of the two did not vary markedly between strains. In contrast, mutants grown under high light had much lower levels of Chl, leading to markedly greater carotenoid to Chl ratios in the mutants when compared to wild type. Under low light conditions the carotenoids of the xanthophyll cycle comprised approximately 15% of the total carotenoids in all strains; under high light the xanthophyll cycle pool increased to over 30% of the total carotenoids in wild type plants and to over 50% of the total carotenoids in the three mutant strains. Whereas the xanthophyll cycle remained fairly epoxidized in all plants grown under low light, plants grown under high light exhibited a considerable degree of conversion of the xanthophyll cycle into antheraxanthin and zeaxanthin during the diurnal cycle, with almost complete conversion (over 90%) occurring only in the mutants. 50 to 95% of the xanthophyll cycle was retained as antheraxanthin and zeaxanthin overnight in these mutants which also exhibited sustained depressions in PS II photochemical efficiency (Fv/Fm), which may have resulted from a sustained high level of photoprotective energy dissipation activity. The relatively larger xanthophyll cycle pool in the Chl b-deficient mutant could result in part from the reported concentration of the xanthophyll cycle in the inner antenna complexes, given that the Chl b-deficient mutants are deficient in the peripheral LHC-II complexes.Abbreviations A antheraxanthin - Chl chlorophyll - Fo and Fm minimal yield (at open PS II reaction centers) and maximal yield (at closed centers) of chlorophyll fluorescence in darkness - F level of fluorescence during illumination with photosynthetically active radiation - Fm maximal yield (at closed centers) of chlorophyll fluorescence during illumination with photosynthetically active radiation - (Fm–F)/Fm actual efficiency of PS II during illumination with photosynthetically active radiation - Fv/Fm+(Fm–Fo)/Fm intrinsic efficiency of PS II in darkness - LHC_II light-harvesting chlorophyll-protein complex of Photosystem II - PFD photon flux density (between 400 and 700 nm) - PS I Photosystem I - PS II Photosystem II - V violaxanthin - Z zeaxanthin  相似文献   

5.
The eddy correlation technique was employed to measure net ecosystem carbon dioxide (CO2) (NEE) and water vapor exchange (LE) over a C3/C4 co-occurring wet temperate Miscanthus-type grassland in the Kanto plain of Japan in the 1999 growing season. The maximal mean canopy height and maximal leaf area index were 1.0m and 5.5, respectively. The daily maximal LE was approximately 540Wm–2. The maximum value of daily accumulative LE was 16.3MJday–1. Daily variation of the decoupling factor () suggests that in the morning LE decoupled with the atmosphere, and the available energy was the major driving force for LE, whereas in the afternoon LE coupled strongly with the atmosphere, and the atmospheric evaporative demand played a critical role in LE. The decline in (from 0.8 to 0.5) with the growing season demonstrates that LE decoupled from the atmosphere in the later growth season. The peak NEE value was 57.4µmolCO2m–2s–1 (the positive value signifies the canopy carbon gain was from the air). The maximal daily integrated NEE was 1.06molCO2m–2day–1 observed during the peak growth stage. A rectangular hyperbolic model was used to describe the relation between daytime NEE and incident photosynthetic photon flux density (PPFD). The net ecosystem CO2 was not light-saturated up to a PPFD level of 2000µmol m–2s–1. The initial slope estimated with the NEE–PPFD response model was approximately 0.042molCO2mol–1photon on average. The canopy light compensation point ranged from 210 to 430µmolm–2s–1 with an average of approximately 310µmolm–2s–1. Both the initial slope and the canopy light compensation point decreased as the canopy senesced. The switch in dominance from C3 to C4 plants played an important role in the canopy fluxes.  相似文献   

6.
The mean labor time of a leaf (hour/day–1) is defined as the ratio of mean daily photosynthetic rate of a leaf (Da; molm–2day–1) to the mean value of potential hourly photosynthetic rate (6060Amax mol m–2h–1) of the leaf. A model was proposed to estimate mean labor time of leaves. Mean labor time was obtained as the product of 24 (hours/day–1) and the four effects, each of which reduces production of a leaf: diel change in light (Diel Effect), reduction in light during cloudy and rainy days (Cloudy Effect), shading on the focal leaves (Shading Effect), and midday and afternoon depression in photosynthesis (Depression Effect). These four effects were estimated for open grown saplings of alder (Alnus sieboldiana), by measuring instantaneous photosynthetic rate and photon flux density above each leaf. The potential daily photosynthetic rate calculated from diel light condition in a clear day was 46.5% of hypothetical daily photosynthetic rate where maximum instantaneous photosynthetic rate was assumed to last throughout the life of the leaf (Diel Effect). The average of the daily photosynthetic rate considering clear, cloudy and rainy days was 79.7% of the clear day (Cloudy Effect). The photosynthetic rate estimated from light condition on the leaf was 85.6% of that in the open site (Shading Effect). Midday depression reduced the daily photosynthetic rate to 72.1% of the potential daily photosynthetic rate (Depression Effect). The product of the four effects multiplied by 24h gave the estimate of mean labor time of leaves to be approximately 5.5 (h/day–1).  相似文献   

7.
Secondary lichen products can be extracted from air-dry thalli of Xanthoria parietina, Xanthoparmelia conspersa and Parmelina tiliacea with 100% acetone without affecting either short-or long-term viability. In Xanthoria parientina damage by acetone started to occur as water content reached the critical lower limit for photosystem II (PSII) activity. Extraction of the blue-light absorbing cortical pigment parietin increased the susceptibility of both air-dry and hydrated thalli to high light. Damage by high light levels caused a permanent reduction in F v/Fm, quantum yield for photosynthetic O2 production and photosynthetic capacity measured after a 2-day recovery period at low light levels (20 mol photons m-2 s-1). Parietin therefore protects the photosynthetic apparatus of Xanthoria parietina against damage by high light levels. Extraction of UV-absorbing pigments from Xanthoparmelia conspersa and Parmelina tiliacea did not increase photoinhibition after 24 h exposure to high light.  相似文献   

8.
A new indigenous soil bacterium Pseudomonas sp. growing on phenol and on a mixture of phenol, toluene, o-cresol, naphthalene and 1,2,3-trimethylbenzene (1,2,3-TMB) was isolated and characterized. Phylogenetic analysis suggested its classification to Pseudomonadaceae family and showed 99.8% DNA sequence identity to Pseudomonas pseudoalcaligenes species. The isolate was psychrotroph, with growth temperatures ranging from ca. 0 to 40 °C. The GC–MS structural analysis of metabolic products of phenol degradation by this microorganism indicated a possible ortho cleavage pathway for high concentrations (over 200 mg L–1) of phenol. Biodegradation rates by this species were found to be three times more effective than those previously reported by other Pseudomonas strains. The effect of temperature on phenol degradation was studied in batch cultures at temperatures ranging from 10 to 40°C and different initial phenol concentrations (up to 500mgL–1). Above 300mgL–1 of initial phenol concentration no considerable depletion was recorded at both 10 and 40°C. Maximum degradation rates for phenol were recorded at 30°C. The biodegradation rate of phenol was studied also in the presence of additional carbon sources (o-cresol, toluene, naphthalene, 1,2,3-TMB) at the optimum growth temperature and was found significantly lower by a factor of eight in respect to the strong competitive inhibition between the substrates and the more available sources of carbon and energy. The Haldane equation =m S/(KS+S+S2/KI) was found to best fit the experimental data at the optimum temperature of 30°C than the Monod equation with kinetic constants m=0.27h–1, KS=56.70mgL–1, KI=249.08mgL–1.  相似文献   

9.
Trichodesmium sp., isolated from the Great Barrier Reef lagoon, was cultured in artificial seawater media containing a range of Fe concentration. Fe additions stimulated growth, N2 fixation, cellular chlorophyll a content, light-saturated chlorophyll a-specific gross photosynthetic capacity (Pm chla) and the dark respiration rate (Rd chla). Cell yields only doubled for 9 nM Fe relative to zero added Fe, whereas N2 fixation increased 11-fold considerably for 450 nM Fe. The results suggest that N2 fixation of Trichodesmium is more sensitive to Fe limitation than are the cell yields.  相似文献   

10.
In this study, the effects of lanthanum were investigated on contents of pigments, chlorophyll (Chl) fluorescence, antioxidative enzymes, and biomass of maize seedlings under salt stress. The results showed that salt stress significantly decreased the contents of Chl and carotenoids, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and quantum efficiency of PSII photochemistry (ΦPSII), net photosynthetic rate (PN), and biomass. Salt stress increased nonphotochemical quenching (qN), the activities of ascorbate peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and the contents of malondialdehyde and hydrogen peroxide compared with control. Pretreatment with lanthanum prior to salt stress significantly enhanced the contents of Chl and carotenoids, Fv/Fm, qP, qN, ΦPSII, PN, biomass, and activities of the above antioxidant enzymes compared with the salt-stressed plants. Pretreatment with lanthanum also significantly reduced the contents of malondialdehyde and hydrogen peroxide induced by salt stress. Our results suggested that lanthanum can improve salt tolerance of maize seedlings by enhancing the function of photosynthetic apparatus and antioxidant capacity.  相似文献   

11.
During most infections the plasma levels of trace elements change, but it is not clear if this reflects changes in the infected tissues. Coxsackievirus B3 (CB3) infection may result in viral replication, subsequent inflammation and changed trace element levels in the myocardium. In the present study, the trace element levels in the plasma and heart of adult male A/J mice were determined during the pre-inflammatory stage (day 4) of CB3 myocarditis for the following trace elements: aluminium (Al), arsenic (As), calcium (Ca), cobalt (Co), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), selenium (Se), silver (Ag), vanadium (V) and zinc (Zn). The severity of the infection was assessed through clinical signs of disease and trace element levels were measured through inductively-coupled plasma mass-spectrometry (ICP-MS). In the heart, the levels decreased for V (59%; p<0.01), Co (38%; p<0.01), Al (81%; p< 0.01), As (66%; p<0.01) and Se (16%; p<0.01). Increased levels were detected for Mn (13%; p<0.05), Fe (48%; p<0.01), Cu (34%; p<0.01) and Ag (46%; p< 0.01). In the plasma, decreases were detected in the level of Zn (32%; p<0.05), whereas increases were seen in Mn (362%; p<0.05), Fe (272%; p<0.01), Co (71%; p<0.05), Cu (25%; n.s.) and Mg (43%; p<0.01) levels. A correlation was found between the levels in plasma and myocardium for Co (r s=–0.636; p<0.05), Fe (r s=0.764; p<0.05), Mn (r s=0.682; p<0.05) and Mg (r s=–0.791; p<0.05). Thus, determination of some of these trace elements in the plasma may be useful to indicate target tissue involvement in the early pre- inflammatory stage of an infectious disease. Some of these elements are important nutrients for the immune system, while others may be associated with the development of disease complications, such as cardiac arrhythmias.  相似文献   

12.
Petitpierre E  Garnería I 《Genetica》2003,119(2):193-199
The chromosomes of ten species of Cyrtonus and the genome sizes of six are surveyed. Among the total of 15 chromosomally studied species, 11 have 2n=28 chromosomes and a 13+Xyp male meioformula, three have 2n=40 and 19+Xyp and one 2n=46 and 22+Xyp. All but one species with 28 chromosomes show only metacentric or submetacentric chromosomes, whereas the species with 40 and 46 chromosomes display some telocentrics or subtelocentrics, that are probably derived from the former by centric fissions. However, since the number of major chromosome arms is strikingly higher in these latter species (NF=70 and 78) than in the 28-chromosome species (mostly NF=56), other chromosomal rearrangements such as pericentric inversions or heterochromatin accretions could also be involved. The genome sizes display a narrow range, from 1C=0.6–1.22pg, and they are not significantly correlated with the chromosome numbers. Some possible factors implied in the rough chromosomal evolution of Cyrtonus are discussed in relation to a few other genera of the subfamily Chrysomelinae.  相似文献   

13.
Quantitative trait locus (QTL) mapping was employed to investigate the genetic determinants of cholesterol gallstone formation in a large intercross between mouse strains SM/J (resistant) and NZB/B1NJ (susceptible). Animals consumed a gallstonepromoting diet for 18 weeks. QTL analyses were performed using gallstone weight and gallstone absence/presence as phenotypes; various models were explored for genome scans. We detected seven single QTLs: three new, significant QTLs were named Lith17 [chromosome (Chr) 5, peak=60 cM, LOD=5.4], Lith18 (Chr 5, 76 cM, LOD=4.3), and Lith19 (Chr 8, 0 cM, LOD=5.3); two confirmed QTLs identified previously and were named Lith20 (Chr 9, 44 cM, LOD=2.7) and Lith21 (Chr 10, 24 cM, LOD=2.9); one new, suggestive QTL (Chr 17) remains unnamed. Upon searching for epistatic interactions that contributed to gallstone susceptibility, the final suggestive QTL on Chr 7 was determined to interact significantly with Lith18 and, therefore, was named Lith22 (65 cM). A second interaction was identified between Lith19 and a locus on Chr 11; this QTL was named Lith23 (13 cM). mRNA expression analyses and amino acid haplotype analyses likely eliminated Slc10a2 as a candidate gene for Lith19. The QTLs identified herein largely contributed to gallstone formation rather than gallstone severity. Cloning the genes underlying these murine QTLs should facilitate prediction and cloning of the orthologous human genes.Abbreviations: CI, confidence interval; F1,first filial generation; F2, second filial (intercross) generation; LOD, logarithm of the odds ratio; NZB, NZB/B1NJ; QTL, quantitative trait locus; SM, SM/J. The nucleotide sequence data for Slc10a2 were submitted to GenBank and were assigned the accession numbers AY529655 (strain SM) and AY529656 (strain NZB).  相似文献   

14.
Photoinhibition and pigment composition of green stem tissues of field-grown adult Eucalyptus nitens were measured on clear spring days with low morning temperatures—conditions that cause photoinhibition in leaves of many plant species. The sun-exposed (north-facing) bark contained less chlorophyll a+b (531 vs 748 mol m–2), neoxanthin (29 vs 41), and -carotene (54 vs 73), more xanthophyll cycle pigments per unit surface area and per unit chlorophyll (71 vs 53 mol m–2 and 141 vs 66 mmol mol–1 chlorophyll), and less lutein per unit chlorophyll (239 vs 190) than the shaded (southern) side. Maximum electron flow rates were 60 mol m–2 s–1 on the sun-exposed side, and about 10 mol m–2 s–1 on the shaded side. Fv/Fm was always lower than 0.8 on the sun-exposed side and the de-epoxidation state (DEPS) of the xanthophyll cycle was dominated by zeaxanthin in midday samples. Fv/Fm increased quickly after darkening, but DEPS recovered more slowly to 40% overnight. This suggested that rapidly reversible pH-dependent quenching was responsible for the bulk of changes in PS II efficiency. Fv/Fm remained below 0.8 overnight, which may well be indicative of photo-damage to PSII. In contrast, DEPS of the shaded side was lower, and Fv/Fm was higher, than for the sun-exposed side. We conclude that E. nitens chlorenchyma on the sun-exposed stem side has a photosynthetic pigment composition similar to sun leaves and it experiences significant photoinhibition in the field.  相似文献   

15.
Although tropical coral reefs are one of the most spectrally complex habitats, there is relatively little known about colour vision of reef fish. In this study, we measured the spectral sensitivity of an endemic Hawaiian coral reef fish, Thalassoma duperrey (family Labridae), and assessed the possible role of visual sensitivity in mediating intraspecific communication. Electrophysiological recordings of compound action potentials from retinal ganglion cells were used to generate spectral sensitivity curves for specific wavelengths (380–620nm). We found at least 2 sensitivity peaks for the on response (max=460, 550nm). The off response lacked a short wavelength mechanism but a medium wavelength mechanism (max=545nm) and a longwave mechanism (max=570nm) were found. To quantify the visual stimulus provided by a conspecific individual, spectral reflectance from the colour pattern of T. duperrey was measured with a spectroradiometer. Luminance and spectral contrast were computed between colour patches of the pattern and between the patches and natural backgrounds (i.e., water and coral). Reflectance from the blue head and contrast from the blue, green and red patches matched the sensitivity maxima of T. duperrey, although this depended on the type of background. Our results indicate that T. duperrey should be able to visually detect the colour pattern of a conspecific fish and that T. duperrey's visual system is designed to enhance target detection in the coral reef habitat with matched and offset cone mechanisms.  相似文献   

16.
Kurasová  I.  Kalina  J.  Urban  O.  Štroch  M.  Špunda  V. 《Photosynthetica》2003,41(4):513-523
The short-term acclimation (10-d) of Norway spruce [Picea abies (L.) Karst] to elevated CO2 concentration (EC) in combination with low irradiance (100 mol m–2 s–1) resulted in stimulation of CO2 assimilation (by 61 %), increased total chlorophyll (Chl) content (by 17 %), significantly higher photosystem 2 (PS2) photochemical efficiency (Fv/Fm; by 4 %), and reduced demand on non-radiative dissipation of absorbed excitation energy corresponding with enhanced capacity of photon utilisation within PS2. On the other hand, at high cultivation irradiance (1 200 mol m–2 s–1) both Norway spruce and spring barley (Hordeum vulgare L. cv. Akcent) responded to EC by reduced photosynthetic capacity and prolonged inhibition of Fv/Fm accompanied with enhanced non-radiative dissipation of absorbed photon energy. Norway spruce needles revealed the expressive retention of zeaxanthin and antheraxanthin (Z+A) in darkness and higher violaxanthin (V) convertibility (yielding even 95 %) under all cultivation regimes in comparison with barley plants. In addition, the non-photochemical quenching of minimum Chl a fluorescence (SV0), expressing the extent of non-radiative dissipation of absorbed photon energy within light-harvesting complexes (LHCs), linearly correlated with V conversion to Z+A very well in spruce, but not in barley plants. Finally, a key role of the Z+A-mediated non-radiative dissipation within LHCs in acclimation of spruce photosynthetic apparatus to high irradiance alone and in combination with EC was documented by extremely high SV0 values, fast induction of non-radiative dissipation of absorbed photon energy, and its stability in darkness.  相似文献   

17.
Dennis H. Greer 《Planta》1995,197(1):31-38
Bean (Phaseolus vulgaris L.) plants were grown at two light periods of 8 and 13 h with a similar photon flux density (PFD) giving a daily photon receipt (DPR) of 17.9 and 38.2 mol · m–2, respectively. Shoot growth and leaf area development were followed at regular intervals and diurnal whole-plant photosynthesis measured. Single mature trifoliate leaves were exposed to photoinhibitory treatments at PFDs of 800 and 1400 mol · m–2 · s–1 and at temperatures of 12 and 20°C. Chlorophyll fluorescence and photon yields were measured at regular intervals throughout each treatment. Plants grown in 13 h had significantly greater leaf areas than those grown in 8 h. There were no differences in maximum rates of photosynthesis, photon yields and only minor but significant differences in Fv/Fm for plants in the two treatments, showing photosynthetic characteristics were dependent on PFD but not DPR. A significant decline in photosynthesis and Fv/Fm occurred over the 13-h but little change in photosynthesis for plants in the 8 h, indicating some feedback inhibition of photosynthesis was occurring. Plants grown in 8 h were consistently more susceptible to photoinhibition of photosynthesis at all treatments than 13-h plants. Nevertheless, photoinhibition was exacerbated by increases in PFD, and by decreases in temperature for leaves from both treatments. However, for plants from the 8-h day, exposing leaves to 12°C and 1400 mol · m–2 · s–1 caused photo-oxidation and severe bleaching but no visible damage on leaves from 13-h-grown plants. Closure of the photosystem II reaction-centre pool was partially correlated with increasing extents of photoinhibition but the relationship was similar for plants from both treatments. There remains no clear explanation for their wide differences in susceptibility to photoinhibition.Abbreviations and Symbols DPR daily photon receipt - F0 and Fm initial and maximal fluorescence - Fv/Fm fluorescence ratio in dark-treated leaves - F/Fm intrinsic efficiency of PSII during illumination - PFD photon flux density - i photon yield (incident basis) - psi quantum yield of PSII electron transport - Pmax maximum rate of photosynthesis - qN non-photochemical quenching coefficient - qP photochemical quenching coefficient Many thanks to my colleague William Laing who spent a considerable effort in developing the programme to run the photosynthesis apparatus. I am also indebted to one reviewer with whom I corresponded to resolve some issues in the paper. This project was funded by the New Zealand Foundation for Research, Science and Technology.  相似文献   

18.
American ginseng, Panax quinquefolius L., is one of the most heavily traded medicinal plants in North America. The effect of harvest on genetic diversity in ginseng was measured with a single generation culling simulation program. Culling scenarios included random harvest at varying levels, legal limit random harvest and legal limit mature plant harvest. The legal limit was determined by the proportion of legally harvestable plants per population (% mature plants per population). Random harvest at varying levels resulted in significant loss of genetic diversity, especially allelic richness. Relative to initial levels, average within-population genetic diversity (H e) was significantly lower when plants were culled randomly at the legal limit (Mann–Whitney U=430, p<0.001) or when only mature plants were culled (Mann–Whitney U=394, p<0.01). Within-population genetic diversity was significantly higher with legal limit mature plant harvest (H e=0.068) than when plants were culled randomly at the legal limit (H e=0.064; U=202, p<0.01). Based on these simulations of harvest over one generation, we recommend that harvesting fewer than the proportion of mature plants could reduce the negative genetic effects of harvest on ginseng populations.  相似文献   

19.
20.
Ueda T  Naoi H  Arai R 《Genetica》2001,111(1-3):423-432
In bitterlings (Acheilognathinae) C- and Ag-banding karyotypes of 6 species-subspecies collected in China and South Korea were analyzed. The chromosomal constitution of 2n=46 (4SM+42ST) in Rhodeus atremius fangi was quite different from that of 2n=48 (8M+20SM+20ST) in other species-subspecies in Rhodeus. It was concluded from the analysis of banded chromosomes that the increase in number of ST during the karyotype change from 2n=48 to 2n=46 was achieved by a series of pericentric inversions from 24 M-SM to 24 ST, and the decrease in the diploid number was caused by an additional tandem fusion of 4 ST chromosomes, forming a new ST pair in the 2n=46 karyotype. The karyotype of Tanakia koreensis, T. signifer, and Acheilognathus macropterus is 2n=48 (8M+20SM+20ST), 2n=48 (8M+20SM+14–16ST+4–6 A), 2n=44 (14M+16SM+14ST), respectively. In R. ocellatus ocellatus, T. koreensis, T. signifer and A. macropterus, karyotype changes from 2n=48 to 2n=44 due to centric fusion and inversion have also been estimated. It was suggested that C-banding heterochromatin was greatly concerned with the karyotype evolution in bitterlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号