首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endophytic fungi are plant symbionts that produce a variety of beneficial metabolites for plant growth and protection against herbivory and pathogens. Fourteen fungal samples were isolated from the roots of soybean cultivar Daemangkong and screened on waito-c rice for their plant growth-promoting capacity. Twelve of the fungal isolates promoted plant growth, while two inhibited it. The fungal isolate DK-1-1 induced maximum plant growth in both waito-c rice and soybean. The plant growth promotion capacity of DK-1-1 was higher than the wild type Gibberella fujikuroi. Gibberellin (GA) analysis of culture filtrate of DK-1-1 showed the presence of higher amounts of bioactive GA3, GA4, and GA7 (6.62, 2.1 and 1.26 ng/mL, respectively) along with physiologically inactive GA5, GA15, GA19, and GA24. Phylogenetic analysis of 18S rDNA sequence identified the fungal isolate as a new strain of Cladosporium sphaerospermum. Gibberellin production and plant growth-promoting ability of genus Cladosporium are reported for the first time in the present study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss‐of‐function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild‐type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1‐overexpressing (GIF1‐OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild‐type plants. More importantly, higher levels of callose were deposited in GIF1‐OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1‐OE plants when compared with the wild‐type plants. We also found that defence‐related genes were constitutively activated in the GIF1‐OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence.  相似文献   

3.
In this study, Pseudomonas species were isolated from the rhizospheres of two plant hosts: rice (Oryza sativa cultivar Pathum Thani 1) and maize (Zea mays cultivar DK888). The genotypic diversity of isolates was determined on basis of amplified rDNA restriction analysis (ARDRA). This analysis showed that both plant varieties selected for two distinct populations of Pseudomonas. The actual biocontrol and plant promotion abilities of these strains was confirmed by bioassays on fungal (Verticillum sp., Rhizoctonia solani and Fusarium sp.) and bacterial (Ralstonia solanacearum and Bacillus subtilis) plant pathogens, as well as indole-3-acetic acid (IAA) production and carbon source utilization. There was a significant difference between isolates from rice and maize rhizosphere in terms of biological control against R.  solanacearum and B.  subtilis. Interestingly, none of the pseudomonads isolated from maize rhizosphere showed antagonistic activity against R.  solanacearum. This study indicated that the percentage of pseudomonad isolates obtained from rice rhizosphere which showed the ability to produce fluorescent pigments was almost threefold higher than pseudomonad isolates obtained from maize rhizosphere. Furthermore, the biocontrol assay results indicated that pseudomonad isolated from rice showed a higher ability to control bacterial and fungal root pathogens than pseudomonad isolates obtained from maize. This work clearly identified a number of isolates with potential for use as plant growth-promoting and biocontrol agents on rice and maize.  相似文献   

4.
Breeding for disease resistance is the most effective strategy to control diseases, particularly with broad‐spectrum disease resistance in many crops. However, knowledge on genes and mechanism of broad‐spectrum resistance and trade‐off between defence and growth in crops is limited. Here, we show that the rice copine genes OsBON1 and OsBON3 are critical suppressors of immunity. Both OsBON1 and OsBON3 changed their protein subcellular localization upon pathogen challenge. Knockdown of OsBON1 and dominant negative mutant of OsBON3 each enhanced resistance to rice bacterial and fungal pathogens with either hemibiotrophic or necrotrophic lifestyles. The defence activation in OsBON1 knockdown mutants was associated with reduced growth, both of which were largely suppressed under high temperature. In contrast, overexpression of OsBON1 or OsBON3 decreased disease resistance and promoted plant growth. However, neither OsBON1 nor OsBON3 could rescue the dwarf phenotype of the Arabidopsis BON1 knockout mutant, suggesting a divergence of the rice and Arabidopsis copine genes. Our study therefore shows that the rice copine genes play a negative role in regulating disease resistance and their expression level and protein location likely have a large impact on the balance between immunity and agronomic traits.  相似文献   

5.
6.

Background  

Rice CEBiP recognizes chitin oligosaccharides on the fungal cell surface or released into the plant apoplast, leading to the expression of plant disease resistance against fungal infection. However, it has not yet been reported whether CEBiP is actually required for restricting the growth of fungal pathogens. Here we evaluated the involvement of a putative chitin receptor gene in the basal resistance of barley to the ssd1 mutant of Magnaporthe oryzae, which induces multiple host defense responses.  相似文献   

7.
An omnivorous phytopathogenic fungus, Glomerella cingulata, was isolated from rice plants in Japan. We evaluated the effect of the fungus as an inoculum source for anthracnose to other plants. Leaf sheaths of rice plants were monitored in mid‐June and mid‐July for 2 years to evaluate the quantitative inhabitancy of G. cingulata in the fungal community. The pathogenicity of G. cingulata to 20 plant leaves was elucidated. A hygromycin B‐resistant green fluorescent protein (GFP) mutant of the fungus was used to observe fungal infection and development processes on rice plants. Glomerella cingulata was detected on rice sheaths in mid‐June at a low frequency, but was not detected in mid‐July. The fungus has a broad pathogenic spectrum, whereas development of the GFP mutant in tissues of rice plants was limited. Thus, the effect of G. cingulata inhabiting rice plants as a source of inoculum for other crops is likely to be low, although the fungal potential to infect various plants was ascertained.  相似文献   

8.
The biotrophic fungal pathogen Ustilaginoidea virens causes rice false smut, a newly emerging plant disease that has become epidemic worldwide in recent years. The U. virens genome encodes many putative effector proteins that, based on the study of other pathosystems, could play an essential role in fungal virulence. However, few studies have been reported on virulence functions of individual U. virens effectors. Here, we report our identification and characterization of the secreted cysteine-rich protein SCRE1, which is an essential virulence effector in U. virens. When SCRE1 was heterologously expressed in Magnaporthe oryzae, the protein was secreted and translocated into plant cells during infection. SCRE1 suppresses the immunity-associated hypersensitive response in the nonhost plant Nicotiana benthamiana. Induced expression of SCRE1 in rice also inhibits pattern-triggered immunity and enhances disease susceptibility to rice bacterial and fungal pathogens. The immunosuppressive activity is localized to a small peptide region that contains an important ‘cysteine-proline-alanine-arginine-serine’ motif. Furthermore, the scre1 knockout mutant generated using the CRISPR/Cas9 system is attenuated in U. virens virulence to rice, which is greatly complemented by the full-length SCRE1 gene. Collectively, this study indicates that the effector SCRE1 is able to inhibit host immunity and is required for full virulence of U. virens.  相似文献   

9.
10.
Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor‐like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α–amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two‐hybrid and co‐immunoprecipitation experiments revealed that OslecRK interacts with an actin‐depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α–amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high‐vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice.  相似文献   

11.
Chitin, a fungal microbial-associated molecular pattern, triggers various defence responses in several plant systems. Although it induces stomatal closure, the molecular mechanisms of its interactions with guard cell signalling pathways are unclear. Based on screening of public microarray data obtained from the ATH1 Affymetrix and Arabidopsis eFP browser, we isolated a cDNA encoding a Ras-related nuclear protein 1 AtRAN1. AtRAN1 expression was enriched in guard cells in a manner consistent with involvement in the control of the stomatal movement. AtRAN1 mutation impaired chitin-induced stomatal closure and accumulation of reactive oxygen species and nitric oxide in guard cells. In addition, Atran1 mutant plants exhibited compromised chitin-enhanced plant resistance to both bacterial and fungal pathogens due to changes in defence-related genes. Furthermore, Atran1 mutant plants were hypersensitive to drought stress compared to Col-0 plants, and had lower levels of stress-responsive genes. These data demonstrate a previously uncharacterized signalling role for AtRAN1, mediating chitin-induced signalling.  相似文献   

12.
Plants are continuously infected by various pathogens throughout their lifecycle. Previous studies have reported that the expression of Class III acyl‐CoA‐binding proteins (ACBPs) such as the Arabidopsis ACBP3 and rice ACBP5 were induced by pathogen infection. Transgenic Arabidopsis AtACBP3‐overexpressors (AtACBP3‐OEs) displayed enhanced protection against the bacterial biotroph, Pseudomonas syringae, although they became susceptible to the fungal necrotroph Botrytis cinerea. A Class III ACBP from a monocot, rice (Oryza sativa) OsACBP5 was overexpressed in the dicot Arabidopsis. The resultant transgenic Arabidopsis lines conferred resistance not only to the bacterial biotroph P. syringae but to fungal necrotrophs (Rhizoctonia solani, B. cinerea, Alternaria brassicicola) and a hemibiotroph (Colletotrichum siamense). Changes in protein expression in R. solani‐infected Arabidopsis OsACBP5‐overexpressors (OsACBP5‐OEs) were demonstrated using proteomic analysis. Biotic stress‐related proteins including cell wall‐related proteins such as FASCILIN‐LIKE ARABINOGALACTAN‐PROTEIN10, LEUCINE‐RICH REPEAT EXTENSIN‐LIKE PROTEINS, XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE PROTEIN4, and PECTINESTERASE INHIBITOR18; proteins associated with glucosinolate degradation including GDSL‐LIKE LIPASE23, EPITHIOSPECIFIER MODIFIER1, MYROSINASE1, MYROSINASE2, and NITRILASE1; as well as a protein involved in jasmonate biosynthesis, ALLENE OXIDE CYCLASE2, were induced in OsACBP5‐OEs upon R. solani infection. These results indicated that upregulation of these proteins in OsACBP5‐OEs conferred protection against various plant pathogens.  相似文献   

13.
The seeds of two cultivars of rice and wheat were examined for the presence of bacteria antagonistic to the growth of fungal plant pathogens. A yellow-pigmented bacterium was found to predominate on rice seed cv. Sasashigure, and in pure culture strongly inhibited mycelial growth of a wide range of pathogens. A similarly inhibitory, cream-coloured bacterium was predominant on wheat seeds cv. Longbow. This paper describes the isolation and range of antagonism of these organisms, and details their identification as a member of the Erwinia herbicola group and Pseudomonas syringae respectively.  相似文献   

14.
15.
Plant defensins are small, highly stable, cysteine-rich antimicrobial peptides produced by the plants for inhibiting a broad-spectrum of microbial pathogens. Some of the well-characterized plant defensins exhibit potent antifungal activity on certain pathogenic fungal species only. We characterized a defensin, TvD1 from a weedy leguminous herb, Tephrosia villosa. The open reading frame of the cDNA was 228 bp, which codes for a peptide with 75 amino acids. Expression analyses indicated that this defensin is expressed constitutively in T. villosa with leaf, stem, root, and seed showing almost similar levels of high expression. The recombinant peptide (rTvD1), expressed in the Escherichia coli expression system, exhibited potent in vitro antifungal activity against several filamentous soil-borne fungal pathogens. The purified peptide also showed significant inhibition of root elongation in Arabidopsis seedlings, subsequently affecting the extension of growing root hairs indicating that it has the potential to disturb the plant growth and development.  相似文献   

16.
17.
Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co‐localized with peroxisomes during appressorial development. Compared with the massive vesicle‐shaped peroxisomes formed in the wild‐type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1‐mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium.  相似文献   

18.
19.
The hypersensitive‐induced reaction (HIR) gene family is associated with the hypersensitive response (HR) that is a part of the plant defense system against bacterial and fungal pathogens. The involvement of HIR genes in response to viral pathogens has not yet been studied. We now report that the HIR3 genes of Nicotiana benthamiana and Oryza sativa (rice) were upregulated following rice stripe virus (RSV) infection. Silencing of HIR3s in N. benthamiana resulted in an increased accumulation of RSV RNAs, whereas overexpression of HIR3s in N. benthamiana or rice reduced the expression of RSV RNAs and decreased symptom severity, while also conferring resistance to Turnip mosaic virus, Potato virus X, and the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. Silencing of HIR3 genes in N. benthamiana reduced the content of salicylic acid (SA) and was accompanied by the downregulated expression of genes in the SA pathway. Transient expression of the two HIR3 gene homologs from N. benthamiana or the rice HIR3 gene in N. benthamiana leaves caused cell death and an accumulation of SA, but did not do so in EDS1‐silenced plants or in plants expressing NahG. The results indicate that HIR3 contributes to plant basal resistance via an EDS1‐ and SA‐dependent pathway.  相似文献   

20.
Because molecular oxygen functions as the final acceptor of electrons during aerobic respiration and a substrate for diverse enzymatic reactions, eukaryotes employ various mechanisms to maintain cellular homeostasis under varying oxygen concentration. Human fungal pathogens change the expression of genes involved in virulence and oxygen-required metabolisms such as ergosterol (ERG) synthesis when they encounter oxygen limitation (hypoxia) during infection. The oxygen level in plant tissues also fluctuates, potentially creating hypoxic stress to pathogens during infection. However, little is known about how in planta oxygen dynamics impact pathogenesis. In this study, we investigated oxygen dynamics in rice during infection by Magnaporthe oryzae via two approaches. First, rice leaves infected by M. oryzae were noninvasively probed using a microscopic oxygen sensor. Second, an immunofluorescence assay based on a chemical probe, pimonidazole, was used. Both methods showed that oxygen concentration in rice decreased after fungal penetration. We also functionally characterized five hypoxia-responsive genes participating in ERG biosynthesis for their role in pathogenesis. Resulting insights and tools will help study the nature of in planta oxygen dynamics in other pathosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号