首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of double cones in the retina of fry of Perca fluviatilis has been investigated by light and electron microscopy. The retina of newly hatched fry is provided with single cones and rods, single cones being the predominant receptor type. Double cones are seen for the first time 22 days after hatching. Mitoses are observed in the periphery of the retina, but are also seen in more central parts of the retina containing differentiated receptors and a cone mosaic. The fate of the cells resulting from the centrally located mitoses is not known. No signs of longitudinal fission of differentiated single cones are seen. It is suggested that double cones in the retina of perch fry arise by fusion of single cones which associate closely and develop subsurface cisterns coextensive with the region of intimate contact in the ellipsoid. During the first few weeks after hatching, there is a gradual shift in arrangement of the cones. In the newly hatched fry, the single cones are arranged in rows. When double cones are first seen, square-pattern units appear, built up from four double cones and a single cone.  相似文献   

2.
Green sturgeon and pallid sturgeon photoreceptors were studied with scanning electron microscopy (SEM), microspectrophotometry and, in the case of the green sturgeon, retinal whole-mounts. The retinas of both species contain both rods and cones: cones comprise between 23% (whole-mount) and 36% (SEM) of the photoreceptors. The cone population of both species is dominated by large single cones, but a rare small single cone is also present. In both species, most rods have long outer segments of large diameter. A rod with a relatively thin outer segment is present in the pallid sturgeon retina. Mean cone packing density for the entire green sturgeon retina is 4,690±891 cones/mm2, with the dorsal retina 14% more dense than the ventral. There is evidence for a horizontal visual streak just above and including the optic disc. Mean rod packing density is 16,006±1,668 rods/mm2 for the entire retina, and fairly uniform throughout. Both species have rods with peak absorbance near 540 nm, as well as short-wavelength-sensitive cones (green: 464.5±0.7 nm; pallid: 439.7±3.5 nm); middle-wavelength-sensitive cones (green: 538.0±1.4 nm; pallid: 537.0±1.7 nm); and long-wavelength-sensitive cones (green: 613.9±3.0 nm; pallid: 617.8±7.6 nm).  相似文献   

3.
Retinal whole-mount preparations from the eyes of the North American paddlefish, Polyodon spathula, were examined with a combination of bright field and differential interference contrast microscopy. The entire retina was mapped and population counts of rod and cone photoreceptors were made at regular intervals throughout the retina. The retina is dominated by rods, but a significant percentage (ca. 38%) of the photoreceptors are cones. Mean cone packing density for the entire retina is 6,402+/-1,216 cones/mm2. There is a small (16%) but statistically significant difference between cone packing density in the dorsal retina (6,674+/-1,168 cones/mm2) and the ventral retina (5,745+/-1,076 cones/mm2). There is no region of unusually high cone concentration that might be construed as a fovea or a visual streak. Mean rod packing density for the entire retina is 10,271+/-1,205 rods/mm2. Except in the far periphery, where rods are less numerous, the density of rods is fairly uniform throughout the retina. The data are discussed with regard to paddlefish habitat and behavior.  相似文献   

4.
Summary Ultrastructural analyses of retinal development in the guppy embryo show that at midgestation all types of photoreceptors are differntiated in the fundus, and at birth differentiation extends over the whole retina. Formation of discs of outer segments is more rapid in rods than in cones. Double cones differentiate simultaneously with long single cones and are formed by the adhesion of two primordial inner segments; short single cones develop last. Wherever cones are differentiated, they are arranged in an adult-type square mosaic. The rods in the embryo, as opposed to the adult, are likewise regularly arranged within the mosaic unit.These results are at variance with the generally held opinion that adult teleosts which possess duplex retinae have larvae with pure cone retinae, and that rods, double cones and mosaics appear in late larval life or only at metamorphosis.In the double cones of the guppy embryo subsurface cisternae develop along the adjoining primordial inner segments. Additionally, regularly distributed subsurface cisternae are formed in the regions of intimate contact of long single cones with double cones and rods.We suggest that the early development of rods and double cones, and a square-mosaic with regular distribution of rods and subsurface cisternae, provide the newly born with a fully functional optical apparatus, especially suited to perception of movements. This is necessary for its survival against predatory, especially maternal, attacks.This work was in part subsidized by a grant from the Medical Research Council of Ireland to Y.W.K.  相似文献   

5.
The deactivation of visual pigments involved in phototransduction is critical for recovering sensitivity after exposure to light in rods and cones of the vertebrate retina. In rods, phosphorylation of rhodopsin by rhodopsin kinase (GRK1) and the subsequent binding of visual arrestin completely terminates phototransduction. Although signal termination in cones is predicted to occur via a similar mechanism as in rods, there may be differences due to the expression of related but distinct gene products. While rods only express GRK1, cones in some species express only GRK1 or GRK7 and others express both GRKs. In the mouse, cone opsin is phosphorylated by GRK1, but this has not been demonstrated in mammals that express GRK7 in cones. We compared cone opsin phosphorylation in intact retinas from the 13-lined ground squirrel (GS) and pig, cone- and rod-dominant mammals, respectively, which both express GRK7. M opsin phosphorylation increased during continuous exposure to light, then declined between 3 and 6 min. In contrast, rhodopsin phosphorylation continued to increase during this time period. In GS retina homogenates, anti-GS GRK7 antibody blocked M opsin phosphorylation by 73%. In pig retina homogenates, only 20% inhibition was observed, possibly due to phosphorylation by GRK1 released from rods during homogenization. Our results suggest that GRK7 phosphorylates M opsin in both of these mammals. Using an in vitro GTPgammaS binding assay, we also found that the ability of recombinant M opsin to activate G(t) was greatly reduced by phosphorylation. Therefore, phosphorylation may participate directly in the termination of phototransduction in cones by decreasing the activity of M opsin.  相似文献   

6.
The outer retina of the smelt Osmerus eperlanus, a visually orientated plankton feeder, of Lake Hiidenvesi (Finland), was examined using both light and transmission electron microscopy. Apart from rods, six morphologically different cone photoreceptor types were identified: short single cones, long single cones, unequal/equal double cones and triple cones (triangular and linear variety). Additionally, in the dorsal region, multiple cone arrangements consisting of up to five members occur. Long single cones and triple cones were observed only sporadically throughout the retina. The incidence of short single cones as a regular element of the cone mosaic is restricted to the ventrotemporal area. The dominant pattern in the Osmerus retina is a pure or a twisted row pattern occurring in all regions. Ventrotemporally, however, square patterns were found as well. The highest cone densities occur in the peripheral ventrotemporal retina. These results indicate that the ventrotemporal region plays an important role in the vision of the smelt. The findings are discussed with respect to the photic habitat conditions and behavioural ecology of the smelt in Lake Hiidenvesi.  相似文献   

7.
The spectral sensitivity and complement of the retinal photoreceptors of the Asiatic smelt from the Sea of Japan were studied by microspectrophotometry and light microscopy. Apart from rods, one type of single cones and one type of unequal double cones were found in major parts of the retina. The dominant type of the cone pattern (mosaic) is a row pattern consisting of various linear arrangements of separate single and double cones. The absorbance maxima of rods and a majority of singe cones and double cones equaled 516, 425 and 514/565 nm, respectively. It has been established that all of the pigments are based on retinal. The findings are compared with data on the osmerid retina from the literature and discussed with respect to the adaptations to light conditions, peculiarities of behavior, and seasonal migrations of smelts.  相似文献   

8.
The morphology of the retinas of the goldeye Hiodon alosoides (fam. Hiodontidae), the brook trout Salvelinus fontinalis (fam. Salmonidae), the yellow perch Perca flavescens and the walleye Stizostedion vitreum (fam. Percidae) was studied by SEM. Semi-thin plastic sections of the same retinas were also examined for comparison. Contrary to observation of earlier authors the goldeye retina was found to possess both rods and cones; in the case of the other three fishes' retinas, present observations correspond to previous ones, adding only details. SEM gives an impressive, three dimensil view of the gross surface features of the retinas. Shrinkage during the processing of the specimens for SEM, while not altering the general topography, does induce artifacts in both plexiform layers.  相似文献   

9.
Recently, we reported the existence of AII "rod" amacrine cells in the retina of the greater horseshoe bat Rhinolophus ferrumequinum (Jeon et al., 2007). In order to enhance our understanding of bat vision, in the present study, we report on a quantitative analysis of cone and rod photoreceptors. The average cone density was 9,535 cells/mm2, giving a total number of cones of 33,538 cells/retina. The average rod density was 368,891 cells/mm2, giving a total number of rods of 1,303,517 cells. On average, the total populations of rods were 97.49%, and cones were 2.51% of all the photoreceptors. Rod: cone ratios ranged from 33.85:1 centrally to 42.26:1 peripherally, with a mean ratio of 38.96:1. The average regularity index of the cone mosaic in bat retina was 3.04. The present results confirm the greater horseshoe bat retina to be strongly rod-dominated. The rod-dominated retina, with the existence of AII cells discovered in our previous study, strongly suggests that the greater horseshoe bat retina has a functional scotopic property of vision. However, the existence of cone cells also suggests that the bat retina has a functional photopic property of vision.  相似文献   

10.
Light miscroscopy of the retina in the Atlantic stingray, Dasyatis sabina, reveal two distinct photoreceptor types. Histological criteria establish the two cell types as morphological rods and cones. The retina was studied through a sequential series of vertical sections in a protocol designed to evaluate the entire retina. By performing differential counts in multiple regions and expressing cones as a percent of the total photoreceptors in a domain, it was possible to determine relative cone density and distribution. Cone distribution varies throughout the retina in two patterns. First, relative cone density gradually decreases peripherally. Second, a cone-rich band occurs along the horizontal axis of the eye, extending from ora serrata to ora serrata. This structure appears to be a visual streak. Both distribution patterns are statistically significant and are consistent among animals regardless of age. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Development of the eyes during the larval and metamorphic stages of the turbot Psetta maxima (Teleosti) was studied using microscopy. Events during differentiation of both eyes occur simultaneously, and no differences between he migrating and no-migrating eye were observed during metamorphosis. At hatching, the eyes are rudimentary, consisting of a neuroepithelial optic cup and a small lens. During larval development, major changes occur in the lens and retina, in which cones are the only photoreceptors. The appearance of rods is delayed until metamorphosis. The outer ocular layers (sclera and choroid) arise during larval development as thin connective layers with little differentiation. These layers undergo important changes just before and during metamorphosis. These results indicate that development of the individual components of the eye occurs at different times. Those of ectodermal origin appear early, providing a simple visual organ during larval life. By metamorphosis, the eye shows adult characteristics, including two types of photoreceptors, a rich choroid vascular supply and ocular structures involved in protecting, shaping, and moving the eye. J Morphol 233:31–42, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The eyes of the benthic deep-sea fish Bathysauropsis gigas were examined macroscopically and histologically. A peculiar iris process was found in each eye of the fish. Photoreceptors in the retina were exclusively cones. These cones were all morphologically twin cones, and rods were not observed. The function of these specific characters remains unknown. The retinal structure of Chlorophthalmus albatrossis was described briefly for comparison. The entirely pure-twin-cone retina of Bathysauropsis gigas suggest a close relationship with the Chlorophthalmus.  相似文献   

13.
The eye of Rhinomugil corsula has a duplex retina differentiated into dorsal and ventral halves, with the ventral retina 116·4 μm thicker than the dorsal retina. The rods of the ventral retina are relatively longer, with longer outer segments. The nuclei of the outer nuclear layer of the dorsal and ventral halves are in four and six to seven rows respectively. The rod outer segment bears a single incision. The mitochondria of cone and rod inner segments has a vitreal-scleral gradient. Single and double cones are present in both halves, with triple cones in the dorsal half only. The outer segments of double cones are equal and united. The single cones have two connecting cilia. The cone cells are arranged in a square mosaic with four double cones and five single cones to each unit in the dorsal half, and in a rhombic pattern in the ventral half.  相似文献   

14.
Phosducin (PD) is a regulatory protein of vertebrate phototransduction cascades. In mammalian retina, it has been thought that only one kind of PD commonly exists in both rods and cones. However, we have found two kinds of PD (OIPD-R and OIPD-C) in the retina of a teleost, medaka (Oryzias latipes). In situ hybridization and immunohistochemical analysis demonstrated that OIPD-R and -C are selectively expressed in rods and cones, respectively. The antiserum against medaka PDs recognized two kinds of proteins in bluegill (Lepomis macrochirus) retina. These results suggest that rod- and cone-specific PDs exist in teleost retinas, probably creating differences in light adaptation between rods and cones.  相似文献   

15.
Photoreceptors of the larval tiger salamander retina   总被引:5,自引:0,他引:5  
Six morphological types of photoreceptor were identified with electron microscopy in radial sections of the retina of the larval tiger salamander, Ambystoma tigrinum. In order of predominance these six types are: red rods, large single cones, double cones composed of principal and accessory members, small single cones, and green rods. The different types of photoreceptor can be distinguished by a number of morphological and cytological characteristics. The identification of the small single cone type now provides evidence for more than one type of single cone in an amphibian retina. The interconnections of the different types of photoreceptor by gap junctions were studied in tangential sections. Rod-rod and rod-cone gap junctions occurred in all possible combinations, but no cone-cone junctions were found even between members of double cones.  相似文献   

16.
The retina of the catfish Clarias butrachus (L.), supposed to possess an all-rod retina, is found on re-investigation to contain both rods and cones. The retina is characterized by a prominent tapetum and multiple optic papillae.  相似文献   

17.
Ole Munk 《Acta zoologica》1990,71(2):89-95
Ontogenetic changes in the visual cell layer of the duplex retina during growth of the eye of the deep-sea teleost Gempylus serpens, the snake mackerel, are illustrated by comparing the retina of a small specimen with that of a previously studied adult fish. The small specimen has tightly packed cones spanning the whole width of the visual cell layer and small rods situated in its vitread part. Over most of the retina the cone population consists of single cones arranged in a very regular hexagonal mosaic. The temporalmost retina has a cone population consisting mainly of twin cones arranged in meridional rows. Growth of the eye is associated with an increase in the thickness of the visual cell layer and the density of rods and a total elimination of the densely packed single cones, the retina of the adult fish possessing only a temporally located population of double cones. The radical differences between the retina of the small and adult snake mackerel are probably associated with the different light regimes encountered by small and large specimens.  相似文献   

18.
The presence of cones in potto's retina has been proved beyond doubt although they are very restricted in number (1 cone for 300 rods). Morphologically, speaking there is no point in calling these cones "rudimentary" except for their slender outer segment. There are red sensitive elements in that retina at wavelengths beyond the spectral sensitivity of visual purple and it is tempting to assume that these elements are cones. The ERG evoked from these elements by red light differs from that in response to white and blue light. They dark-adapt faster than the receptors sensitive to blue and white flashes. However in some of their properties, for example fusion frequency, these cones behave like rods in other species. As these few cones seem to activate the bipolar cells nearly as effectively as the numerous rods, it is suggested that these cones may be responsible for day vision in the potto.  相似文献   

19.
Recent findings shed light on the steps underlying the evolution of vertebrate photoreceptors and retina. Vertebrate ciliary photoreceptors are not as wholly distinct from invertebrate rhabdomeric photoreceptors as is sometimes thought. Recent information on the phylogenies of ciliary and rhabdomeric opsins has helped in constructing the likely routes followed during evolution. Clues to the factors that led the early vertebrate retina to become invaginated can be obtained by combining recent knowledge about the origin of the pathway for dark re-isomerization of retinoids with knowledge of the inability of ciliary opsins to undergo photoreversal, along with consideration of the constraints imposed under the very low light levels in the deep ocean. Investigation of the origin of cell classes in the vertebrate retina provides support for the notion that cones, rods and bipolar cells all originated from a primordial ciliary photoreceptor, whereas ganglion cells, amacrine cells and horizontal cells all originated from rhabdomeric photoreceptors. Knowledge of the molecular differences between cones and rods, together with knowledge of the scotopic signalling pathway, provides an understanding of the evolution of rods and of the rods'' retinal circuitry. Accordingly, it has been possible to propose a plausible scenario for the sequence of evolutionary steps that led to the emergence of vertebrate photoreceptors and retina.  相似文献   

20.
Visual pigment in photoreceptors is activated by light. Activated visual pigment (R*) is believed to be inactivated by phosphorylation of R* with subsequent binding of arrestin. There are two types of photoreceptors, rods and cones, in the vertebrate retina, and they express different subtypes of arrestin, rod and cone type. To understand the difference in the function between rod- and cone-type arrestin, we first identified the subtype of arrestins expressed in rods and cones in carp retina. We found that two rod-type arrestins, rArr1 and rArr2, are co-expressed in a rod and that a cone-type arrestin, cArr1, is expressed in blue- and UV-sensitive cones; the other cone-type arrestin, cArr2, is expressed in red- and green-sensitive cones. We quantified each arrestin subtype and estimated its concentration in the outer segment of a rod or a cone in the dark; they were ∼0.25 mm (rArr1 plus rArr2) in a rod and 0.6–0.8 mm (cArr1 or cArr2) in a cone. The effect of each arrestin was examined. In contrast to previous studies, both rod and cone arrestins suppressed the activation of transducin in the absence of visual pigment phosphorylation, and all of the arrestins examined (rArr1, rArr2, and cArr2) bound transiently to most probably nonphosphorylated R*. One rod arrestin, rArr2, bound firmly to phosphorylated pigment, and the other two, rArr1 and cArr2, once bound to phosphorylated R* but dissociated from it during incubation. Our results suggested a novel mechanism of arrestin effect on the suppression of the R* activity in both rods and cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号