首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of topography on the nature of humic substances, isolated as water soluble organic carbon (WSOC), fulvic acid (FA), and humic acid (HA) was evaluated by comparing relative proportion and chemical characteristics of these fractions in upland and bottomland Coastal Plain soils in South Carolina. The fractions were characterized by elemental analysis and13C cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. The majority of humic substances occur as humic acids, with bottomland soils having higher HA/FA ratios when compared to upland soils. We found no significant differences between upland and bottomland humic substances with respect to yields of WSOC and fulvic acids, and in the C and N content of humic and fulvic acids. Carbon-13 CPMAS NMR spectroscopy revealed that the WSOC and fulvic acid fractions were composed largely of O-alkyl-C structures with bottomland soils having higher amounts of these groups. Humic acid C distribution was similar between upland and bottomland soils and was largely composed of aromatic groups. Our results demonstrate that topography influences the formation of humic acid and the structural and chemical properties of the various humic fractions.requests for offprints  相似文献   

2.
In contrast to their soil counterparts, algal fulvic acids were more inhibitory than the corresponding humic acids. Fulvic and humic acids fromFucus vesiculosus were more efficient than the correspondingLaminaria digitata acids in inactivating the enzyme.Laminaria humic acids, which have no phenolic hydroxyls, showed a concentration dependent inhibition hardly in accordance with the presumed role played by these groups in the activity of oxidases.  相似文献   

3.
K. H. Tan 《Plant and Soil》1977,48(1):89-101
Summary The present investigation was initiated to study molecular weight fractionation of humic compounds isolated from surface samples of an Ultisol (Red Yellow Pc lzolic soil) and a Spodosol (Podzol), using fine (mol. wt. cutoff 3500) and coarse (mol. wt. cutoff 12000) dialysis membranes and sephadex gel filtration. Characterization of the humic fractions was conducted by elemental analysis and infrared spectroscopy. The results confirmed that fulvic acid (FA) was higher in ash and elemental content than humic acid (HA). With careful purification the amount of ash was found to be reduced to a minimum, but not to zero. Sephadex gel filtration revealed that fine HA (obtained with fine membranes) was composed of smaller amounts of HA-I (high mol. wt.) and large amounts of HA-II (low mol. wt. fraction). Coarse HA (obtained with coarse membranes) had almost equal amounts of HA-I and HA-II. Fine or coarse FA yielded only low molecular weight components after elution through sephadex. Infrared spectra of the humic fractions were indicative for the presence of phosphoglyceric acid as a possible constituent of the low molecular weight fraction of humic compounds.Contribution of the Univ. of Georgia, Agric. Expt. Sta., College Sta., Athens, Ga. Permission for the publication herein of Sadtler Standard spectrum has been granted, and all rights are reserved by Sadtler Res., Inc.Contribution of the Univ. of Georgia, Agric. Expt. Sta., College Sta., Athens, Ga. Permission for the publication herein of Sadtler Standard spectrum has been granted, and all rights are reserved by Sadtler Res., Inc.  相似文献   

4.
Biologioal activities of humic acid (Na salt), hymatomelanic acid (Na salt), lignofulvic acid and of fulvic acids isolated from peat were studied by means of the auxin-, gibberellin-, and cytokinin- bioassays. All the four tested fractions showed higher or lower stimulating activity in these bioassays. However, the stimulating effect is considerably lower and cannot be interpreted as phytohormone activity. Some fractions in some concentrations also showed inhibitory effects. The manner of biological action of the studied fractions might bo the result of interaction of their respective components.  相似文献   

5.
Summary Viscosities were investigated of solutions of fulvic and humic acid molecular weight fractions of aquatic, terrestrial and microbial origin. Aquatic fulvic and humic acid molecules were, at pH 7, more voluminous than other types of humic compounds of similar molecular weight. It would appear that in low molecular weight non-aquatic humic matter, more inter- than intra-molecular bonding is present, with increasing molecular weight the bonding becomes more intra-molecular. Differences between average molecular weight values as obtained by an ultrafiltration method (Amicon) and by viscosimetry ranged from –18.7 to 18.5%. The largest deviations were in the low molecular weight range (<5,500 daltons). Higher molecular weight humics (in particular humic acids) appeared to have a more elongated structure than lower molecular weight material (in particular fulvic acids). Indications were obtained that on hydration humic moleculars become more elongated.  相似文献   

6.
R. Knowles  L. Barro 《Plant and Soil》1981,61(1-2):243-250
Summary Living cells ofSerratia marcescens, uniformly labelled with15N, were added to samples of maple (Acer saccharum) and black spruce (Picea mariana) forest soils. After different periods of incubation from zero time to 100 days, the soils were subjected to alkali-acid and phenol extraction to provide humic acid, fulvic acid, humin and humoprotein fractions. Significant amounts of the cell nitrogen were recovered in the humic and fulvic acids immediately after addition. After incubation, less cell, nitrogen appeared in the humic acid and more in the fulvic acid. The amount of cell nitrogen recovered in the humin fraction increased with incubation. Roughly 5 to 10 per cent of the added cell nitrogen was found as amino acid nitrogen from humoprotein in a phenol extract of the humic acid. The data are consistent with the occurrence of co-precipitation of biologically labile biomass nitrogen compounds with humic polymers during the alkaline extraction procedure involved in the humic-fulvic fractionation.  相似文献   

7.
1. Low mol. wt peptides in plasma were isolated by reverse-phase HPLC from steer and sheep carotid arterial and rat heart blood and portal blood from all three species. 2. Elution profiles for peptide fractions were similar but the concentration of peptide-bound amino acids (PBAA) in fractions corresponding to different mol. wt peptides was not constant across species. 3. PBAA contributed between 65 and 78% to the plasma amino acid pool in steer and sheep but only 52% in the rat (P less than 0.05). 4. The percentage of many individual amino acids present in either free amino acid (FAA) or PBAA pools was different for ruminant compared with rat plasma but it was similar for steer and sheep apart from branch-chain amino acids (P less than 0.05).  相似文献   

8.
Summary Organic matter was extracted with a mixture of 0.1M Na4P2O7 and 0.1M NaOH from soil and a commercial organic matter product, Aqua Humus, and separated into humic and fulvic acids according to their solubility in acid and alkaline solutions. They were purified by passage through a cation exchange resin, freeze-dried, and used for characterization and seedling growth studies. The CEC increased with pH for both humic and fulvic acids. Data from tobacco seedling studies show that humic and fulvic acids from both sources increased root number and length at low concentrations while at high concentrations, humic acids inhibited length and number of roots but fulvic acids had no effect. The results support the proposition that fractions of organic matter referred to as humic and fulvic acids affect root development by means other than as a source of nutrients.  相似文献   

9.
The determination of optical properties of organic matter using spectroscopic techniques is a powerful tool for the characterization of humic substances (HS) in soils and sediments because of sensitivity, specificity and sample throughput. However, basic spectroscopic techniques have practical limitations because of the similarity in the optical properties of many HS. To improve resolution, the combination of excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) was applied for characterizing fulvic acid (FA) and humic acid (HA) fractions from soils and sediments of two estuarine environments in Spain. Five fluorescent components were identified by EEM-PARAFAC and were found in both FA and HA fractions, consistent with the new paradigm of HS as supramolecular associations as well as the ubiquity of the HS components in the environment. Their contribution was, however, different between the FA and HA fractions. Two different, humic-like, fluorescent components were representative of FA and HA fractions, respectively. The spectral characteristics of these components were similar to previously reported PARAFAC components in dissolved organic matter (DOM) in a wide range of environments, suggesting their applicability in assessing OM quality and environmental dynamics. A microbial humic-like component was much more abundant in FA than in HA fractions. Furthermore, principal component analysis clarified that the two identified protein-like components, were enriched in sediment HA compared to soil HA, suggesting a larger contribution of refractory algaenan in sediment HA. The results of the present study demonstrate that EEM-PARAFAC is a useful technique for the biogeochemical characterization of soil and sedimentary HS.  相似文献   

10.
The contribution of lignin to the formation of humic compounds was examined in different environments of the terrestrial-aquatic interface in the Garonne River valley in southwestern France. Alluvial soils and submerged or nonsubmerged river and pond sediments containing alder, poplar, or willow [14C-lignin]ligno-celluloses were incubated. After a 49-day incubation period, 10 to 15% of labeled lignins in alluvial soils was recovered as evolved 14CO2. In nonsubmerged sediments, 10% of the applied activity was released as 14CO2, and in submerged sediments, only 5% was released after 60 days of incubation. In the different alluvial soils and sediments, the bulk of residual activity (70 to 85%) remained in the two coarsest-grain fractions (2,000 to 100 and 100 to 50 μm). Only 2 to 6% of the residual activity of these two coarse fractions was recovered as humic and fulvic acids, except in the case of alder [14C-lignin]lignocellulose, which had decomposed in a soil collected beneath alders. In this one 55% of the residual activity was extracted as humic substances from the 2,000- to 100-μm fraction. Humic and fulvic acids represented from 6 to 50% of the residual activity in the finest-grain fractions (50 to 20 and 20 to 0 μm). The highest percentages were obtained in soil collected beneath alders and in submerged pond sediment. The contribution of different groups of microorganisms, as well as nutrients and clay content, may influence humic-substance formation in such environments. Physical stability also may be an important factor for complex microbial activity involved in this process.  相似文献   

11.
The accumulation and preservation of peat soils in Everglades freshwater marshes and mangrove swamps is an essential process in the ecological functioning of these ecosystems. Human intervention and climate change have modified nutrient dynamics and hydroperiod in the Everglades and peat loss due to such anthropogenic activities is evident. However, not much is known on the molecular level regarding the biogeochemical characteristics, which allow peat to be preserved in the Everglades. Lipid biomarkers trapped within or bound to humic-type structures can provide important geochemical information regarding the origin and microbial transformation of OM in peat. Four lipid fractions obtained from a Cladium peat, namely the freely extractable fraction and those associated with humin, humic acid, and fulvic acid fractions, showed clear differences in their molecular distribution suggesting different OM sources and structural and diagenetic states of the source material. Both, higher plant derived and microbial lipids were found in association with these humic-type substances. Most biomarker distributions suggest an increment in the microbial/terrestrial lipid ratio from the free to humin to humic to fulvic fractions. Microbial reworking of lipids, and the incorporation of microbial biomarkers into the humic-type fractions was evident, as well as the preservation of diagenetic byproducts. The lipid distribution associated with the fulvic acids suggests a high degree of microbial reworking for this fraction. Evidence for this 3D structure was obtained through the presence of the relatively high abundance of α,ω-dicarboxylic acids and phenolic and benzenecarboxylic compounds. The increment in structural complexity of the phenolic and benzencarboxylic compounds in combination with the reduction in the carbon chain length of the dicarboxylic acids from the free to fulvic fraction suggests the latter to be structurally the most stable, compacted and diagenetically altered substrate. This analytical approach can now be applied to peat samples from other areas within the Everglades ecosystem, affected differently by human intervention with the aim to assess changes in organic matter preservation.  相似文献   

12.
Pseudomonas cepacia grew rapidly using a mixture of all three branched chain amino acids as carbon source, but failed to use individual branched chain amino acids as sole carbon source. Extracts of bacteria grown on branched chain amino acids had between 2- and 3-fold higher levels of -ketoglutarate-dependent branched chain amino acid aminotransferase activity than extracts of glucose-grown bacteria. The increase in enzyme activity was due to the presence of a second aminotransferase not detected in extracts of glucose-grown bacteria. The enzyme, which presumably plays a role in branched chain amino acid degradation, had an apparent molecular weight (mol. wt.) of 75,000. The other aminotransferase was formed constitutively and apparently functions in synthesis of branched chain amino acids. It was more stable than the 75,000 mol.wt. enzyme, and was purified to homogeneity and found to be a 180,000 mol.wt. oligomer containing 6 subunits of approximately 30,000 mol.wt. Antiserum prepared against the purified enzyme inhibited its activity but failed to influence the activity of the 75,000 mol.wt. aminotransferase, suggesting that the two isoenzymes are encoded by different genes.  相似文献   

13.
Dissolved organic matter of a low-coloured stream   总被引:2,自引:0,他引:2  
SUMMARY. The dissolved organic matter (DOM) of White Clay Creek (Pennsylvania, U.S.A.), a low-coloured stream, was characterized by gel permeation chromatography, humic acid determination, compound classification analysis and gas chromatography.
Large polymers (approximate mol.wt above 5000) were virtually absent. The majority of the DOM consisted of fulvic acid-like material, of probable mol.wt less than 3000. Highly coloured material represented only a small portion of the total. Substances classifiable as phenols, carbohydrates, lipids, amino acids or proteins made up only a small fraction of the DOM. Sixteen low mol. wt compounds (carboxylic acids, amino acids, carbohydrates and an amide) were tentatively identified.
DOM concentration had a mean value of 6.4 mgC/l and showed annual fluctuations, with maxima in autumn and in late winter.  相似文献   

14.
1. Phosphatases released extracellularly by aquatic micro-organisms often complex with humic compounds that are released from decomposing tissues of plants and imported in dissolved and colloidal forms to lakes and rivers. 2. Dissolved humic substances from several natural sources formed complexes with phosphatases of bacterial and algal origin and reduced hydrolytic activity by non-competitive inhibition. Restoration of the hydrolytic enzyme activities from the humic substances–enzyme complexes increased progressively over time when exposed experimentally to natural and artificial ultraviolet (UV) irradiance. 3. Greater phosphatase restoration occurred from humic acid–phosphatase complexes when humic acids were extracted from dissolved organic matter (DOM) of mixed natural plant sources, than when humic acids were isolated from a decomposing single plant species. 4. The data support a previously suggested hypothesis that phosphatases and other enzymes in aquatic ecosystems can complex with humic substances that dominate the DOM pool. These humic substances–enzyme complexes, in which the enzyme is temporarily inactivated, can be transported with water movements and displaced to other sites within the ecosystem. Upon exposure to UV irradiance in the photic zone, functional enzymes can be released. The potential for inactivation and storage of enzyme activity, relocation within the ecosystem, and subsequent reactivation holds important implications for regulation of nutrient cycling in fresh waters.  相似文献   

15.
Two bacterial strains Pseudomonas acidovorans No 26 and Pseudomonas sp. No 4 grown in Conn and yeast extract-glucose media, or in the media enriched with tyrosine, were found to produce dark brown pigment. It was shown that in the bacterial cultures numerous phenolic and quinone-type compounds were formed and transformed to humic-like polymers. Formation of humic-like substances started in the bacterial cells and was accompanied by the presence of phenyloxidases in the bacterial cultures. The bacterial "humic acids" were obtained from the supernatants in amounts varing from 0.05 to 0.865 mg/1 mg of dry weight of cells and from the cells in amounts of 0.02 to 0.165 mg/1 mg of dry weight of cells, depending on the medium used and time of incubation. The IR spectra of the bacterial "humic acids" appeared to be very similar to IR spectrum of the synthetic humic acids (Fluka A.G.) and contained the same chemical groups as the soil humic acids. The culture medium after growth of the strain No 26 was fractionated into "fulvic, hymatomelanic and humic acid" fractions. The hydrolysates from the obtained fractions contained amino acids and uronic acids. The amino acid composition appeared to be very similar to that of soil humic acids.  相似文献   

16.
The decomposition of soil organic matter is mediated by extracellular enzymes. The aim of this work was to identify the factors determining the activity and size of the mobile fraction of extracellular enzymes (laccase, Mn-peroxidase, endocellulase, cellobiohydrolase, ??-glucosidase, endoxylanase, ??-xylosidase, ??-glucosidase, chitinase, arylsulfatase, phosphatase, phosphodiesterase, alanine and leucine aminopeptidase) using a set of soils covering a wide range of physico-chemical properties. Organic matter content had a major effect on enzyme activity both in forest and grassland soils, while the effects of pH and humic compounds content were only important in forest soils, and the molecular mass of humic compounds and Ca content were only important in grasslands. Specific enzyme activity was either comparable between the soil types or higher in grasslands. With the exception of Mn-peroxidase and ??-glucosidase, the specific activities of all enzymes in arable fields under tillage were similar to those in grasslands. Mobility differed among the enzymes and ranged from <1% for arylsulfatase and phosphodiesterase up to 20?C40% for ??-glucosidase and aminopeptidases, with pH being the most important variable. These results demonstrate that the factors regulating enzyme activity are likely to be different in forest soils and grasslands and that enzyme mobility is a characteristic feature of each individual enzyme.  相似文献   

17.
In most ecosystems, the degradation of complex organic material depends on extracellular enzymes produced by microbes. These enzymes can exist in bound or free form within the soil, but the dynamics of these different enzyme pools remain uncertain. To address this uncertainty, I determined rates of enzyme turnover in a volcanic soil with and without added enzymes. I also tested whether or not soil minerals and humic acids would alter enzyme activity. In soils that were gamma-irradiated to stop enzyme production, 35–70% of the enzyme activity was stable throughout the 21-day incubation. The remaining enzyme fraction decayed at rates ranging from − 0.032 to − 0.628 day−1. In both the irradiated soils and in soils with added enzymes, addition of the mineral allophane had a strong positive effect on most enzyme activities. Another added mineral, ferrihydrite, had a weak positive effect on some enzymes. Added humic acids strongly inhibited enzyme activity. These findings suggest that minerals, especially allophane, enhance potential enzyme activities in young volcanic soils. However, the actual activity and function of these enzymes may be low under field conditions if stabilization results in less efficient enzyme-substrate interactions. If this is the case, then much of the measured enzyme activity in bulk soil may be stabilized but unlikely to contribute greatly to ecosystem processes.  相似文献   

18.
Summary Infrared and proton resonance spectra have been used to characterize fraction extracted sequentially from humic and fulvic acids by diethylether, acetone, dioxane, tetrahydrofuran, pyridine and dimethylformamide. The results showed that the same solvents extracted structurally similar components from both humic and fulvic acids. On the other hand, the spectra showed solvent-dependent differences, some being characteristic for a preponderance of aliphatic structures, others for aromatic structures.  相似文献   

19.
Mineralization and redistribution of carbon from14C-labelled oat shoots and [14C(U)] labelled glucose, leucine, acetate and phenylacetate were studied in light loamy sand and medium clay loam under different levels of mineral nutrition. Losses of mineralized14C as CO2 were greater in the sandy soil than in the clay soil. NPK and NPK+Ca fertilization increased the rates of decay of the introduced plant organic matter. Among the small molecular organic compounds glucose was degraded fastest and phenylacetate slowest. Incorporation of radioactive carbon into humus fractions varied and depended on the nature of the compound introduced and on the soil type. Carbon of glucose, phenylacetate and acetate was mainly incorporated into fulvic acids, whereas14C of leucine was almost evenly distributed between humic and fulvic acids and14C of oat residues in fulvic acids and humin fractions. There was significantly higher incorporation of14C into humic acids and lower incorporation into humins in the sandy soil compared to the clay soil. NPK+Ca decreased the conversion of14C from phenylacetate and acetate to bitumens and increased its content in humic acids, particularly in the clay soil. The incorporation of14C from phenylacetate to humins benefitted from mineral fertilization during the first 30 days of the experiment in both soils.  相似文献   

20.
《Ecological Engineering》2006,26(3):283-292
The water repellent layer (WRL) in the Casuarina plantation near Taichung Harbor in central Taiwan is mainly due to the development of filamentous fungi. The hyphae of the isolated fungi and the metabolites of the TCHC-5 and TCHC-20 fungi are also significantly hydrophobic. In the soil layers, humic substances decrease the phosphorus fixation and contribute to the formation of WRL. The hydrophobic properties of humic substances are unfavorable for the nutrient cycling in this area. The water contact angles of fulvic acids and humic acids are pH-dependent. Increasing the solution pH value reduces the hydrophobic strength for fulvic acids and/or humic acids. TCHC-15 and TCHC-16 isolated fungi exude strong acidic metabolites (pH 2.7–3.0). This may result in polymerization and/or precipitation of fulvic acids and humic acids and increase the hydrophobic strength of the soil layers. Humic substances with aliphatic chains are the main components that form WRL in soils. Soil pH may be an indicator of the hydrophobic potential for organic matters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号