首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recessive dwarfing alleles of rye ( Secale cereale L.), ct1 and ct2 , caused a 35–55% reduction in the length of leaf 2 compared with corresponding tall lines grown at both 10°C and 20°C. The dwarf lines were 45–50% as responsive to applied GA3 as the tall lines at 20°C but the absolute GA-responsiveness of the dwarfs was greater at 10°C than at 20°C. There was no significant difference in the contents of GA19, GA20, GA29, GA1, GA3 and GA8 in the leaf extension zone of tall and dwarf seedlings grown at 20°C. It was concluded that the mechanism whereby GA homeostasis is maintained is functional in both tall and dwarf lines despite marked differences in leaf extension rate. The recessive rye mutations may cause loss of function late in the GA-cell elongation pathway or, alternatively, indirectly affect GA-responsiveness in vegetative tissues. The genetic and physiological evidence indicates that ct1 and ct2 are unrelated to the GA-insensitive Rht genes in hexaploid bread wheat.  相似文献   

2.
The role of environment on the dwarfing (short internode) phenomenon of apple (Malus domestisca Borkh.) was investi gated and defined in controlled environmental chambers. Orchard-grown very dwarf, dwarf and semi-dwarf trees obtained by natural sibcrossing of spur-type cv. Golden Delicious and cv. Delicious, as well as standard cv. Golden Delicious, were propagated via in vitro techniques. Growth was rapid and none of the 4 types exhibited dwarf-like characteristics when grown at constant 27°C with 12, 14 or 16 h daylengths. Standard and very dwarf plants grew at nearly the same rate at constant 30°C, whereas growth nearly ceased on both types at constant 35°C after 7 days. Dwarf and very dwarf plants responded differently from standard and semi-dwarf plants when grown under alternating (ramped) night/day temperatures (15 or 20°C night ramped up to a daytime maximum over 8 h of 23, 28, 33 or 38°C, held for 2 h and then ramped down over 5 h to the night temperature). As the night/maximum day temperature differentia) increased from 0 to 23° under the ramping environments, growth of dwarf plants decreased markedly as compared to standard plants. When the same night/maximum day temperature differential occurred, the effect on decreasing shoot length was greater at the higher (20°C) night temperature. Increasing maximum day temperatures under the ramped environment also reduced leaf area plant?1 but did not markedly affect leaf number, resulting in short internodes. When a period of constant temperature was followed by ramped temperatures or vice versa, the sequence of constant vs ramped environments made little difference in the final growth of the 4 plant types. The data point to high temperature as the major factor for causing dwarfing of the sensitive plant types. Increasing the differential between night and maximum day temperature resulted in short internode. dwarf plants with small leaves similar to orchard-grown dwarf trees.  相似文献   

3.
After the application of [13C3H]-gibberellin A20 to wild-type (tall) sweet peas ( Lathyrus odoratus L.) labelled gibberellin A1 (GA1), GA8, GA29 and 2-epiGA29 were identified as major metabolities by gas chromatography-mass spectrometry after high performance liquid chromatography. By contrast in genetically comparable dwarf ( II ) plants only labelled GA29 and 2-epiGA29 were produced in significant amounts, although evidence was obtained for trace amounts of labelled GA1 and GA8. The apical portions of dwarf plants contained 8–10 times less GA1 than those of tall plants but at least as much GA20 (measured using di-deuterated internal standards). In conjunction with previous data these results strongly indicate that in genotype ll internode length is reduced and leaf growth altered by a reduction in GA1 levels attributable to a partial block in the 3β-hydroxylation of GA20 to GA1.
In contrast to dwarf plants, semidwarf plants (genotype lblb ) contained more GA1 in the apical portion than wild-type counterparts. This is consistent with the suggestion that lb alters some aspect of GA sensitivity.  相似文献   

4.
Evidence was obtained by gas chromatography-mass spectrometry and gas chromatography-selected ion monitoring for the presence of gibberellin A20), GA1, GA29, GA8 and 2-epiGA29 in vegetative shoots of tall sweet pea, Lathyrus odoratus L. Both tall (genotype L –) and dwarf (genotype II ) sweet peas elongated markedly in response to exogenous GA1 attaining similar internode lengths at the highest dose levels. Likewise internode length in both genotypes was reduced by application of the GA biosynthesis inhibitor, PP333. The ratio of leaflet length to width was reduced by application of PP333 to tall plants and this effect was reversed by GA1. When applied to plants previously treated with PP333, GA20 promoted internode elongation of L – plants as effectively as GA1, but GA29 was not as effective as GA1 when applied to II plants. In contrast, GA20 and GA1 were equally effective when applied to the semidwarf lb mutant but GA-treated lblb plants did not attain the same internode length as comparable GA-treated Lb – plants. The difference in stature between the tall and dwarf types persisted in dark-grown plants. It is concluded that GA1 may be important for internode elongation and leaf growth in sweet pea. Mutant l may influence GA1 synthesis by reducing 3β-hydroxylation of GA20 whereas mutant lb appears to affect GA sensitivity.  相似文献   

5.
The highly active, polar gibberellin-like substance found in the apical region of shoots of tall (genotype Le ) peas ( Pisum sativum L.) is shown by combined gas chromatography-mass spectrometry (GC/MS) to be GA1. This substance is either absent or present at only low levels in dwarf ( le ) plants. Multiple ion monitoring (MIM) tentatively suggests that GA8 may also be present in shoot tissue of tall peas. Gibberellin A1 is the first 3 β-hydroxylated gibberellin positively identified in peas, and its presence in shoot tissue demonstrates the organ specificity of gibberellin production since GA1 has not been detected in developing seeds. Application of GA1 can mask the Le/le gene difference. However, whilst Le plants respond equally to GA20 and GA1, le plants respond only weakly to GA20, the major biologically active gibberellin found in dwarf peas. These results suggest that the Le gene controls the production of a 3 β-hydroxylase capable of converting GA20 to GA1. Further support for this view comes from feeds of [3H] GA20 to Le and le plants. Plants with Le metabolise [3H] GA20 to three major products whilst le plants produce only one major product after the same time. The metabolite common to Le and le plants co-chromatographs with GA29. The additional two metabolites in Le peas co-chromatograph with GA1 and GA8.  相似文献   

6.
When Phalaenopsis amabilis is grown under high temperature (30/25°C, day/night), flowering is blocked, and this can be reversed by gibberellin A3 (GA3) treatment. Associated with GA3 treatment under high temperature are increases in sucrose, glucose and fructose as compared with warm-treated plants. Spraying with sucrose solution alone caused leaf epinasty in plants grown under high temperature. Epinasty was released by about 9 days of GA3 treatment. In GA3-treated plants under high temperatures, sucrose application to the source leaves led to an increase in sugar content in both leaves and inflorescence. In contrast, although in warm-treated plants sucrose application to the source leaves increased sugar content in the leaves, it did not increase sucrose content in the inflorescence. These results corroborate our hypothesis that in Phalaenopsis GA3 stimulates sink activity in the apical meristem and promotes the translocation of sucrose from source leaves to the apex of the inflorescence, where it accumulates. GA3 treatment led to an increase in sucrose synthase activity and had no effect on invertase activity.  相似文献   

7.
Orchard-grown dwarf apple (Malus domestica Borkh.) trees selected from a hybrid population were propagated by tissue culture but had a growth pattern similar to standard cv. Golden Delicious plants when grown at constant 27°C instead of the expected dwarf pattern of growth. Shoot elongation was markedly reduced, with or without gibberellin A1 (GA1) or GA4 treatment, when trees were grown in an environment where day temperature was maintained at 35°C for 2 h in a ramped regime (night 20°C day ramped to 35°C, held for 2 h and ramped down to 20°C night over a 14-h photoperiod). Application of GA1 or GA4 partially overcame growth retardation resulting from prior paclobutrazol treatment of both standard and dwarf trees grown at constant 27°C and of standard trees grown in the ramped environment. However, these GAs had no effect on paclobutrazol-treated or untreated dwarfs grown in the ramped regime. Gas chromatography-mass spectrometry with labelled internal standards was used to quantify GA1, GA3, GA8, GA19, GA20 and GA29 in extracts from standard and dwarf plants grown either at a constant 27°C or in a 20-30-20°C ramped temperature regime. Standard plants, which elongate quite rapidly in either environment, had similar levels of these GAs in both temperature regimes. The slowly growing dwarfs in the ramped temperature environment contained three times more GA19 than the rapidly elongating dwarfs grown at 27°C. The concentrations of the other GAs were reduced to ca 40% or less in plants grown in the ramped temperature regime compared with those grown at 27°C. These data suggest that shoot elongation of dwarf plants is sensitive to elevated temperatures both as a result of reduced responsiveness to GAs and because of a reduction in the concentration of GA1, apparently as a result of a lower rate of conversion of GA19 to GA20. It is possible that the altered GA metabolism may be a consequence of the change in GA sensitivity.  相似文献   

8.
9.
Gibberellin levels and cold-induced floral stalk elongation in tulip   总被引:2,自引:0,他引:2  
To investigate the role of gibberellins (GAs) in the cold requirement of tulip ( Tulipa gesneriana L. cv. Apeldoorn), bulbs were dry-stored at 5°C or at 17°C for 12 weeks prior to planting at 20°C. Only precooled bulbs showed rapid sprout growth and developed a full-grown flower. Endogenous GA levels were measured in sprouts and basal plates at the time of planting and in the second week after planting, by combined gas chromatography-mass spectrometry using deuterated internal standards. GA4 was the major gibberellin. while GA1, GA9 and GA34 were present in lower amounts. At the time of planting, sprouts from non-cooled bulbs contained significantly more GA4 and GA1, per sprout than those from precooled bulbs. Hence, there is no direct correlation between rapid sprout growth after planting and high GA levels at planting. In the second week after planting, floral stalks of precooled bulbs contained 2 to 3 times more GA4 and its metabolite GA34 per floral stalk and per g fresh weight than those of non-cooled bulbs. The results are discussed with regard to the role of gibberellins in the cold-induced floral stalk elongation of tulip.  相似文献   

10.
Jolly, C. J., Reid, J. B. and Ross, J. J. 1987. Internode length in Pisum. Action of gene lw.
Mutant K29 of Pisum sativum L. is shown to possess a recessive gene at a new locus, lw , which results in reduced internode length, delayed flowering and increased symptoms of water congestion compared with the parental cv. Torsdag. The interaction of gene lw with the internode length genes na, le, la and cry 5 is examined. Extracts from the shoots of Iw plants are shown to contain similar levels of gibberellin (GA)-like substances to comparable Lw plants, but Iw plants do not elongate to the same extent as Lw plants when treated with GA19 GA19, or GA20. The effect of gene Iw is not graft-transmissible. Unlike essentially isogenic dwarf lines possessing the GA-synthesis genes le, Ih or Is, lw plants show a relative increase in elongation similar to Torsdag in response to photoperiod extensions from sources rich in far-red light. These results suggest that gene lw probably does not reduce elongation by influencing GA-synthesis and that the response to photoperiod extensions with far-red light may depend on the level of GA.  相似文献   

11.
The extreme dwarf d x tomato ( Lycopersicon esculentum Mill.) mutant has very short internodes which were found to contain shorter and fewer epidermal cells. The leaves are highly abnormal. The mutant showed a substantial stem growth response to GA3, without approaching normal stature or morphology. The active gibberellin GA1 and its precursors GA19 and GA20 were identified by coupled gas chromatography-mass spectrometry (GC/MS) in d x shoots. Quantitative GC/MS revealed that GA20 accumulated to far higher levels than normal in stems and leaves of the mutant.  相似文献   

12.
Gibberellin biosynthesis pathways were investigated using isotopically-labelled C19- and C20-gibberellins and cell-free preparations from immature seed of Phaseous coccineus cv. Prizewinner. The initial steps in an early 13-hydroxylation pathway involved the conversion gibberellin A12-aldehyde (GA12-aldehyde) to GA12 which was 13-hydroxylated to yield GA53, Metabolism of GA53 yielded GA44. In contrast to other cell-free systems, GA44 was not further converted, either as a δ-lactone or an open-lactone structure, to the C-20 aldehyde GA19. GA19 was, however, metabolised to GA20, GA5 and GA1. GA20 represented a branch point in the pathway as it was converted both to GA1, which was an end product, and GA5 which was further converted to GA6. Like GA1, GA6 was also an end-product of the early 13-hydroxylation pathway.
A non-13-hydroxylation pathway involving GA4, GA15, GA24 GA37 and GA36 also originated from GA12. The terminal product of this pathway was the 3β-hydroxy C19-gibberellin, GA4.  相似文献   

13.
The involvement of gibberellins (GAs) in the regulation of floral stalk elongation and flower development has been studied in tulip. The biological activity of GA4 and GA9, both endogenous in tulip bulb sprouts, and GA1, was tested in vitro on sprouts of cooled and non-cooled tulip bulbs ( Tulipa gesneriana L. cv. Apeldoorn), in the presence or absence of the GA biosynthesis inhibitor paclobutrazol. At early starting dates of incubation, floral stalks from both cooled and non-cooled bulbs hardly showed any elongation in the absence of exogenous GA. Paclobutrazol had no effect on floral stalk elongation, and the response to GAs of sprouts from cooled bulbs was greater than that of sprouts from non-cooled bulbs. At later starts of incubation, considerable floral stalk elongation occurred without GA application. Paclobutrazol inhibited this floral stalk elongation, and the growth of sprouts from both cooled and non-cooled bulbs was stimulated by GA application. The effect of paclobutrazol was reversed by simultaneous application of GA4 or GA9. Application of GA with and without paclobutrazol resulted in the same elongation of the floral stalk, indicating the absence of substantial side effects of the inhibitor. The isolated sprouts did not develop a full-grown flower without the addition of GA. GA4 was more effective than GA9 in stimulating this flower development. The results demonstrate that both sprouts from cooled and non-cooled bulbs are responsive to exogenous GAs in vitro, and may be a site of GA biosynthesis.  相似文献   

14.
Transgenic plants of Nicotiana tabacum overexpressing a gibberellin (GA) 20-oxidase cDNA ( CcGA20ox1 ) from citrus, under the control of the 35S promoter, were taller (up to twice) and had larger inflorescences and longer flower peduncles than those of control plants. Hypocotyls of transgenic seedlings were also longer (up to 4 times), and neither the seedlings nor the growing plants elongated further after application of GA3. Hypocotyl and stem lengths were reduced by application of paclobutrazol, and this inhibition was reversed by exogenous GA3. The ectopic overexpression of CcGA20ox1 enhanced the non-13-hydroxylation pathway of GA biosynthesis leading to GA4, apparently at the expense of the early-13-hydroxylation pathway. The level of GA4 (the active GA from the non-13-hydroxylation pathway) in the shoot of transgenic plants was 3–4 times higher than in control plants, whereas that of GA1, formed via the early-13-hydroxylation pathway (the main GA biosynthesis pathway in tobacco), decreased or was not affected. GA4 applied to the culture medium or to the expanding leaves was found to be at least equally active as GA1 on stimulating hypocotyl and stem elongation of tobacco plants. The results suggest that the tall phenotype of tobacco transgenic plants was due to their higher content of GA4, and that the GA response was saturated by the presence of the transgene.  相似文献   

15.
Internode length in Pisum. Gibberellins and the slender phenotype   总被引:3,自引:0,他引:3  
Pea plants ( Pisum sativum L.) possessing the slender phenotype (conferred by the gene combination la crys ) have extremely long, thin internodes and are phenotypically similar to dwarf plants (possessing genes La and/or Cry ) that have been treated with a non-limiting dose of gibberellin (GA3). In contrast to tall and dwarf plants, slender plants are virtually insensitive to treatment with AMO 1618, PP333 or GA3 and addition of the "gibberellin-less" mutant gene na does not alter the phenotype of slender plants. Na slender segregates possessed lower levels of gibberellin-like substances than comparable dwarf segregates when extracts from shoots were assayed using the lettuce hypocotyl or rice seedling bioassays. In addition, na slenders possessed little or no gibberellin-like activity even though they possessed a slender phenotype. Thus the gene combination la crys causes slender plants to respond as if they are saturated with gibberellins for growth. In addition, the gene combinations la crys and le la cryc (allele cryc is less extreme in effect than crys ) are shown to be almost completely epistatic to the alleles at the na locus. All these results suggest that gibberellin levels are not important in determining the internode length of slender peas (genotype la crys ). The possible mechanisms by which this could occur are discussed.  相似文献   

16.
Gibberellins A1, A3, A4 and A7 were identified by combined gas chromatography mass spectrometry (GC-MS) in leaf and stem tissues of 17-day-old seedlings of wheat ( Triticum aestivum L. ), cvs Siete Cerros (semi-dwarf, Rht1) and Møystad (tall), of F1, hybrids from the cross Møystad × Siete Cerros and of 2 selected lines from the cross Møystad x Sonora 64 (Rht1 and Rht2). GA, and GA, were identified by full scan mass spectra separately in all 5 extracts, GA4 and GA7, were identified by selected ion monitoring in a bulked fraction. About 90% of the biological activity (Tan-ginbozu dwarf rice bioassay) in all 5 extracts was due to the GA1/GA3-fraction.  相似文献   

17.
Plants of annual celery ( Apium graveolens L.) were treated with paclobutrazol during anthesis. Seeds collected from the treated plants showed a marked reduction in germination in light and failed to germinate in the dark. Application of GA4/7 to the imbibition solution reversed the inhibitory effect of paclobutrazol while gibberellic acid (GA3) was ineffective. Benzyladenine (BA) interaction with GA4/7 was light and concentration-dependent. At relatively low concentrations in the dark there was a synergistic effect, but at higher concentrations, especially in the light, BA, antagonized the GA4/7 effect. Seedlings emerging from the seeds from paclobutrazol-treated plants were only slightly shortened. It is suggested that paclobutrazol applied to the mother plants inhibited the biosynthesis of endogenous GAs, which normally enable the germination of annual seeds under unfavorable conditions. Exogenously applied GA4/7 fulfills the function of the absent endogenous GAs.  相似文献   

18.
The plant-growth-promoting rhizobacteria (PGPR), Bacillus pumilus and Bacillus licheniformis, isolated from the rhizosphere of alder ( Alnus glutinosa [L.] Gaertn.) have a strong growth-promoting activity. Bioassay data showed that the dwarf phenotype induced in alder seedlings by paclobutrazol (an inhibitor of gibberellin [GA] biosynthesis) was effectively reversed by applications of extracts from media incubated with both bacteria and also by exogenous GA3. Full-scan gas chromatography-mass spectrometry analyses on extracts of these media showed the presence of GA1, GA3, GA4and GA20, in addition to the isomers 3- epi -GA1 and iso -GA3. Isotope dilution analysis indicated that epi -GA1 was an artefact. Likewise, iso -GA3 is also probably an artifact spontaneously formed during extraction and/or analysis. In both culture media, GA1 was present in higher concentrations (130–150 ng ml−1) than GA3 (50–60 ng ml−1), GA4 (8–12 ng ml−1) and GA20 (2–3 ng ml−1). The data indicated that culture of both bacteria accumulate bioactive C19-gibberellins in relative high amounts and that these GAs appear to be physiologically active in the host plant. The evidence suggests that the promotion of stem elongation induced by the PGPR could be mediated by bacterial GAs.  相似文献   

19.
The levels of GA1, 3-epiGA1 and GA8 in genotypes Le, le and led of Pisum sativum L. were determined by gas chromatography-selected ion monitoring (GC-SIM) after feeds of [3H, 13C]-GA20 to each genotype. The levels of endogenous and [13C]-labelled metabolites were determined by reverse isotope dilution with unlabelled GA1, 3-epiGA1 and GA8. The results demonstrate a quantitative relationship between the level of GA1 and the extent of elongation both on a per plant and a per g fresh weight basis. These results are consistent with previous findings in peas and other species possessing a predominant early 13-hydroxylation pathway for GA biosynthesis.
The levels of 3-epiGA1 also decreased in the genotypic sequence Le, le, led although not as rapidly as for the level of GA1. This may suggest that the alleles at the le locus also influence the formation of 3-epiGA1.  相似文献   

20.
Three rapid cycling Brassica rapa genotypes were grown in greenhouse conditions to investigate the possible relationships between endogenous gibberellin (GA) content and shoot growth. Endogenous GA1 GA3 and GA20 were extracted from stem samples harvested at 3 weekly intervals and analyzed by gas chromatography-mass spectrometry with selected ion monitoring, using [2H2]-GA1 and [2H2]-GA20 as quantitative internal standards. During the first 2 weeks, GA levels of the dwarf, rosette ( ros ), averaged 36% of levels in normal plants (on a per stem basis). Levels in the tall mutant, elongated internode (ein) , were consistently higher, averaging 305% of levels in normal plants.
Differences in shoot height across the genotypes resulted from varying internode length which resulted from epidermal cell length and number being increased in ein and decreased in ros relative to the normal genotype. The exogenous application of GA3 to normal plants increased cell length while the application of paclobutrazol (PP333), a triazole plant growth retardant, reduced cell size. Thus, exogenous GA manipulations mimicked the influence of the mutant genes ros and ein. The dwarf, ros , had reduced shoot dry weights and relative growth rates compared to the other genotypes. Total dry weights were similar in ein and the normal genotype but stem weights were increased in ein , compensating for decreased leaf weights. Thus, the gibberellin-deficiency of ros resulted in generally reduced shoot growth. The overproduction of endogenous GA by ein did not result in enhanced shoot growth but rather a specific enhancement of internode elongation and stem growth at the expense of leaf size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号