首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
鲣鱼(Katsuwonus pelamis)生物学研究进展   总被引:3,自引:0,他引:3  
鲣鱼是金枪鱼渔业最为重要的目标鱼种之一,对鲣鱼的生物学研究是对其种群资源进行评估的基础。综述了国外学者对鲣鱼基础生物学研究的进展,从鲣鱼的年龄和生长、繁殖、摄食习性3个方面对以前的研究结论进行整理比较,并总结出所存在的不足及今后可能的发展方向,旨在为开展相关的鲣鱼生物特性研究及对鲣鱼资源的初步评估提供参考依据。  相似文献   

2.
Spoilage in skipjack tuna (Katsuwonus pelamis) was studied under controlled conditions by incubating whole, fresh fish in seawater at 38 degrees C, the optimum temperature for histamine formation. Bacterial isolates were obtained from the loin tissue of a decomposing tuna containing 134 mg of histamine per 100 g and a total anaerobic count of 3.5 x 10(5)/g after incubation for 24 h. Over 92% of the 134 isolates obtained were facultatively or obligately anaerobic bacteria. Eighteen isolates produced histamine in culture media containing histidine, and these were identified as Clostridium perfringens, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus mirabilis, and Vibrio alginolyticus. Histidine decarboxylase activity of several isolates was measured in a tuna broth medium and with resting cells suspended in a buffered histidine solution.  相似文献   

3.
Spoilage in skipjack tuna (Katsuwonus pelamis) was studied under controlled conditions by incubating whole, fresh fish in seawater at 38 degrees C, the optimum temperature for histamine formation. Bacterial isolates were obtained from the loin tissue of a decomposing tuna containing 134 mg of histamine per 100 g and a total anaerobic count of 3.5 x 10(5)/g after incubation for 24 h. Over 92% of the 134 isolates obtained were facultatively or obligately anaerobic bacteria. Eighteen isolates produced histamine in culture media containing histidine, and these were identified as Clostridium perfringens, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus mirabilis, and Vibrio alginolyticus. Histidine decarboxylase activity of several isolates was measured in a tuna broth medium and with resting cells suspended in a buffered histidine solution.  相似文献   

4.
5.
Substrate and inhibitory specificity of mitochondrial monoamine oxidase (MAO) from liver of skipjack tuna Katsuwonus pelamis was studied. The results of substrate—inhibitory analysis with application of chlorgilin and deprenyl might be indirect proofs of existence of one molecular MAO form in the tuna liver. Studied enzyme, as liver MAO of terrestrial mammals, deaminates tyramine, tryptamine, dopamine, serotonin, noradrenalin, benzylamine, β-phenylethylamine, N-methylhistamine and does not deaminate histamine, is not suppressed by 10 mM semicarbazide. Takrin, acriflavin, proflavin, acridine orange and pyronine G were established to be irreversible inhibitors of middle strength in respect to MAO of tuna liver. The specificity of inhibitors action upon deamination of various substrates was equal.  相似文献   

6.
The effects of temperature change (in vitro) on acid-base balance of skipjack tuna blood were investigated. By examining the relationship between blood pH and temperature (in vitro) under conditions of constant CO2 tension (open system), it was observed that dpH/dT = -0.013 U/degrees C. This value falls well within the range of in vivo values reported for other ectothermic vertebrates, and is only slightly different than results obtained in vitro under conditions of constant CO2 content (closed system; dpH/dT = -0.0165 U/degrees C). It is concluded that changes in pH following temperature changes can be accounted for solely by the passive, in vitro behaviour of the chemical buffer system found in the blood, so that active regulatory mechanisms of pH adjustment need not be postulated for skipjack tuna.  相似文献   

7.
8.
Fish eggs are known as a rich source of lectins. In this study we purified and characterized a lectin from unfertilized Katsuwonus pelamis hard roe. K. pelamis lectin (KPL) was purified by separation into two fractions above and below the molecular weight of 10kDa using ultramembrane, gel filtration on a Sephadex G-100, and affinity chromatography on an asialofetuin-Sepharose 4B. KPL is a glycoprotein of 140kDa, composed mainly of aspartic acid, glycine, phenylalanine, glutamic acid, threonine and serine residues. Analysis of the carbohydrate composition by gas-liquid chromatography indicated that carbohydrates constituted 14% of the total weight and this 14% is comprised of mannose, galactose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, fucose, arabinose and sialic acid. The lectin is comprised of four subunits. These subunits have a molecular mass corresponding to 35kDa. KPL specifically agglutinated human blood type A erythrocytes and, in a hemagglutination inhibitory test, the potent inhibitors were D-galactose, lactose, lactosamine, asialofetuin, N-acetyl-D-galactosamine, O-serinyl-2-acetamido-2-deoxy-alpha-D-galactopyranoside and O-serinyl-2-acetamido-2-deoxy-beta-D-galactopyranoside (O-serinyl-beta-D-GalNAc). The first 10 residues of the N-terminal region were determined as PVELCDAKCT. Furthermore it was determined that the hemagglutinating activity of KPL was dependent on divalent metal cations and that the optimum activity of KPL was exhibited at 40 degrees C and pH 6.0-8.5 in the presence of Ca2+.  相似文献   

9.
To test the hypothesis that white muscle fibre portions of the myotomes are used at sustainable swimming speeds, skipjack tuna, Katsuwonus pelamis , were forced to swim against various current velocities in a water tunnel while electrical activity of the red and white muscle fibres was simultaneously recorded. Eight fish were tested, five fish graded white muscle fibres into activity at swimming speeds above their minimum hydrostatic equilibrium speed, but well below the estimated maximum sustainable swimming speed of skipjack tuna. Three other fish showed white muscle fibre activity at minimum swimming speeds, a possibly abnormal condition.  相似文献   

10.
Synopsis Latent period, rise time, contraction time, and half relaxation time from isotonic contractions of isolated white muscle samples from skipjack tuna, Katsuwonus pelamis, were determined at 20°, 27°, and 34° C. These parameters were found to be inversely proportional to temperature (Q10 = 1.47, 1.67, 1.62, and 1.72, respectively). The data show that contraction time and the effect of temperature on contraction time of skipjack tuna white muscle are not unique when compared to other equal-sized teleosts. Based on contraction time, maximum swimming speeds at each muscle temperature were calculated and found not significantly to exceed the maximum speeds of other equal-sized teleosts, when comparisons are made at the same white muscle temperatures  相似文献   

11.
Tunas (family: Scombridae, Tribe: Thunnini) exhibit anatomical, physiological, and biochemical adaptations that dramatically increase the ability of their cardiorespiratory systems to transfer oxygen from the water to the tissues. In the present study the vascular anatomy of the skipjack tuna, Katsuwonus pelamis, gill was examined by light and scanning electron microscopic analysis of methyl methacrylate vascular corrosion replicas prepared under physiological pressure. The gill filament contains three distinct blood pathways, respiratory, interlamellar, and nutrient. The respiratory, or arterio-arterial (AA) pathway, is the site of gas exchange and consists of the afferent and efferent filamental arteries (AFA and EFA) and arterioles (ALA and ELA) and the lamellae. Each ALA in the basal filament supplies ten or more lamellae and they anastomose with their neighbor to form a continuous vascular arcade. Four modifications in the lamellar circulation appear to enhance gas exchange efficiency. 1) The ALA deliver blood directly to the outer margin of the lamellae where unstirred boundary layer effects are predicted to be minimal and water PO2 highest. 2) Pillar cells are closely aligned along the outer boundary of the inlet side and the inner boundary of the outlet side of the lamellae to form multiple distributing and receiving blood channels. 3) Elsewhere in the lamella, pillar cells are aligned to form diagonal channels that direct blood from the outer to the inner lamellar margins, thereby reducing vascular resistance. 4) The lamellar sinusoid is especially widened near the efferent end to augment oxygen saturation of blood flowing through the inner margin. These adaptations, plus the presence of a bow-shaped interlamellar septum, and a thinned filament core appear to decrease gill vascular resistance and maximize gas-exchange efficiency. The interlamellar (IL) and nutrient systems originate from post-lamellar vessels and are arterio-venous (AV) pathways. IL vessels form an extensive ladder-like lattice on both sides of the filamental cartilage and are supplied in part by narrow-bore vessels from the medial wall of the EFA. Their function is unknown. Nutrient vessels are formed from the confluence of a myriad of tortuous, narrow-bore vessels arising from the basal region of the EFA and from efferent branchial arteries. They re-enter the filament and eventually drain into the IL system or filamental veins. As these AV pathways are retained despite considerable reduction in filamental tissue, it is evident that they are integral components of other non-respiratory homeostatic activities of the gill.  相似文献   

12.
Summary Responses to acute hypoxia were measured in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) (1–3 kg body weight). Fish were prevented from making swimming movements by a spinal injection of lidocaine and were placed in front of a seawater delivery pipe to provide ram ventilation of the gills. Fish could set their own ventilation volumes by adjusting mouth gape. Heart rate, dorsal and ventral aortic blood pressures, and cardiac output were continuously monitored during normoxia (inhalant water (PO2>150 mmHg) and three levels of hypoxia (inhalant water PO2130, 90, and 50 mmHg). Water and blood samples were taken for oxygen measurements in fluids afferent and efferent to the gills. From these data, various measures of the effectiveness of oxygen transfer, and branchial and systemic vascular resistance were calculated. Despite high ventilation volumes (4–71·min-1·kg-1), tunas extract approximately 50% of the oxygen from the inhalant water, in part because high cardiac outputs (115–132 ml·min-1·kg-1) result in ventilation/perfusion conductance ratios (0.75–1.1) close to the theoretically ideal value of 1.0. Therefore, tunas have oxygen transfer factors (ml O2·min-1·mmHg-1·kg-1) that are 10–50 times greater than those of other fishes. The efficiency of oxygen transfer from water in tunas (65%) matches that measured in teleosts with ventilation volumes and order of magnitude lower. The high oxygen transfer factors of tunas are made possible, in part, by a large gill surface area; however, this appears to carry a considerable osmoregulatory cost as the metabolic rate of gills may account for up 70% of the total metabolism in spinally blocked (i.e., non-swimming) fish. During hypoxia, skipjack and yellowfin tunas show a decrease in heart rate and increase in ventilation volume, as do other teleosts. However, in tunas hypoxic bradycardia is not accompanied by equivalent increases, in stroke volume, and cardiac output falls as HR decreases. In both tuna species, oxygen consumption eventually must be maintained by drawing on substantial venous oxygen reserves. This occurs at a higher inhalant water PO2 (between 130 and 90 mmHg) in skipjack tuna than in yellowfin tuna (between 90 and 50 mmHg). The need to draw on venous oxygen reserves would make it difficult to meet the oxygen demand of increasing swimming speed, which is a common response to hypoxia in both species. Because yellowfin tuna can maintain oxygen consumption at a seawater oxygen tension of 90 mmHg without drawing on venous oxygen reserves, they could probably survive for extended periods at this level of hypoxia.Abbreviations BPda, BPva dorsal, ventral aortic blood pressure - CaO2, CvO2 oxygen content of arterial, venous blood - DO2 diffusion capacity - Eb, Ew effectiveness of O2 uptake by blood, and from water, respectively - Hct hematocrit - HR heart rate - PCO2 carbon dioxide tension - PaCO2, PvCO2 carbon dioxide tension of arterial and venous blood, respectively - PO2 oxygen tension - PaO2, PvO2, PiO2, PcO2 oxygen tension of arterial blood, venous blood, and inspired and expired water, respectively - pHa, pHv pH of arterial and venous blood, respectively - Pw—b effective water to blood oxygen partial pressure difference - Pg partial pressure (tension) gradient - cardiac output - R vascular resistance - SV stroke volume - SEM standard error of mean - TO2 transfer factor - U utilization - g ventilation volume - O2 oxygen consumption  相似文献   

13.
In fishes, catecholamines increase red blood cell intracellular pH through stimulation of a sodium/proton (Na+/H+) antiporter. This response can counteract potential reductions in blood O2 carrying capacity (due to Bohr and Root effects) when plasma pH and intracellular pH decrease during hypoxia, hypercapnia, or following exhaustive exercise. Tuna physiology and behavior dictate exceptionally high rates of O2 delivery to the tissues often under adverse conditions, but especially during recovery from exhaustive exercise when plasma pH may be reduced by as much as 0.4 pH units. We hypothesize that blood O2 transport during periods of metabolic acidosis could be especially critical in tunas and the response of rbc to catecholamines elevated to an extreme. We therefore investigated the in vitro response of red blood cells from yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis) to catecholamines. Tuna red blood cells had a typical response to catecholamines, indicated by a rapid decrease in plasma pH. Amiloride reduced the response, whereas 4,4′diisothiocyanatostilbene-2,2′-disulphonic acid enhanced both the decrease in plasma pH and the increase in intracellular pH. Changes in plasma [Na+], [Cl], and [K+] were consistent with the hypothesis that tuna red blood cells have a Na+/H+ antiporter similar to that described for other teleost red blood cells. Red blood cells from both tuna species were more responsive to noradrenaline than adrenaline. At identical catecholamine concentrations, the decrease in plasma pH was greater in skipjack tuna blood, the more active of the two tuna species. Based on changes in plasma pH, the response of red blood cells to catecholamines from both tuna species was less than that of rainbow trout (Oncorhynchus mykiss) red blood cells, but greater than that of cod (Gadus morhua) red blood cells. Noradrenaline had no measurable influence on the O2 affinity of skipjack tuna blood and only slightly increased the O2 affinity of yellowfin tuna blood. Our results, therefore, do not support our original hypothesis. The catecholamine response of red blood cells from high-energy-demand teleosts (i.e., tunas) is not enhanced compared to other teleosts. There are data on changes in cardio-respiratory function in tunas caused by acute hypoxia and modest increases in activity, but there are no data on the changes in cardio-respiratory function in tunas accompanying the large increases in metabolic rate seen during recovery from exhaustive exercise. However, we conclude that during those instances where high rates of O2 delivery to the tissues are needed, tunas' ability to increase cardiac output, ventilation volume, blood O2 carrying capacity, and effective respiratory (i.e., gill) surface area are probably more important than are the responses of red blood cells to catecholamines. We also use our data to investigate the extent of the Haldane effect and its relationship to blood O2 and CO2 transport in yellowfin tuna. Yellowfin tuna blood shows a large Haldane effect; intracellular pH increases 0.20 units during oxygenation. The largest change in intracellular pH occurs between 40–100% O2 saturation, indicating that yellowfin tuna, like other teleosts, fully exploit the Haldane effect over the normal physiological range of blood O2 saturation. Accepted: 27 March 1998  相似文献   

14.
The gills of 31 skipjack tuna Katsuwonus pelamis (L.) caught in the Alboran Sea (western Mediterranean Sea) were examined for metazoan parasites, and the gills of 4 specimens from the Balearic Sea (also western Mediterranean Sea) were analysed for comparative purposes. Nine -species of parasites were found, including 8 didymozoid trematodes (Atalostrophion cf. bio-varium, Didymocylindrus filiformis, Didymocylindrus simplex, Didymocystis reniformis, Didymoproblema fusiforme, Didymozoon longicolle, Koellikeria sp. and Lobatozoum multisacculatum) and 1 caligid copepod (Caligus bonito). Koellikeria sp. and L. multisacculatum were not recorded in the Balearic Sea. Most of the parasites (79.2% of all specimens) were didymozoids. Didymozoon longicolle was the dominant species; A. cf. biovarium, D. simplex, D. fusiforme and L. multisacculatum are reported from the Mediterranean Sea for the first time. No correlation was found between the intensity of infection of any parasite species and host size or sex. Most of the parasites, particularly didymozoids, showed a high site-specificity. Significant differences were found between the parasite assemblages of K. pelamis from the Alboran Sea and from the Atlantic Ocean. D. fusiforme, D. longicolle and L. multisacculatum are suggested as potential tags to follow skipjack tuna migrations between the Atlantic Ocean and Mediterranean Sea.  相似文献   

15.
A high level of genetic diversity was observed in Katsuwonus pelamis populations from India ( h  = 0·952, ne  = 14·3) and Japan ( h  = 0·897, ne  = 8·9). The log‐likelihood ( G )‐based exact test revealed significant heterogeneity in the distribution of haplotypes between the two populations ( P  < 0·01, s . e . = 0·001). This result suggests that the two populations should now be treated as demographically independent and managed separately.  相似文献   

16.
A method was developed to obtain heavy meromyosin (HMM) from the tryptic digest of skipjack tuna dorsal myosin. The tuna HMM thus obtained was shown to be homogeneous on gel filtration-gel electrophoresis, and on ultracentrifugation. The sedimentation constant (S20,w) was estimated to be 6.1S for tuna HMM. The ATPase activity of tuna dorsal HMM was found to be very similar to that of rabbit skeletal HMM in many respects: KCl concentration dependence, pH dependence, effect of pCMB, kinetic parameters (Vmax and Ka) in actin activation, and Arrhenius activation energy. The only difference found between tuna HMM and rabbit HMM was in heat denaturation behavior: the ATPase activities of tuna HMM were approximately four times as sensitive to heat inactivation as those of rabbit HMM. Thus, tuna HMM should represent a good experimental material for investigations of the molecular basis of susceptibility to denaturation, and of the characteristics of fish myosins in general. A new type of heat denaturation of myosin was observed. It occurred in a very early stage of heat treatment of either tuna dorsal myosin or rabbit skeletal myosin; however, it did not occur upon heat treatment of HMM of either tuna or rabbit, and it was detectable in terms of the Mg-ATPase activity only when the activity was measured in the presence of untreated actin.  相似文献   

17.
Observations on haematological characteristics of albacore, Thunnus alalunga , and skipjack Katsuwonus pelamis , tunas, were made on blood samples collected from specimens immediately after they were caught and from an immobilized, restrained albacore sampled serially over a 24 h period. Results indicated eight types of blood cells in the peripheral circulation of both species. Lymphocytes were the most common leucocyte followed, in decreasing order, by neutrophils, eosinophils and monocytes in fish sampled immediately after being landed. Variations in differential and total white blood cell counts were observed in the immobilized, restrained albacore. High packed cell volumes and haemoglobin concentrations, typical for fast swimming fishes, were found in both species. Red blood cell counts were similar to those of other teleosts, and reticulocytes expressed as a percentage of mature erythrocytes were 6.1% and 5.2% for albacore and skipjack, respectively.  相似文献   

18.
Growth hormone (GH) was extracted under alkaline conditions (pH 10) from pituitary glands (6.3 g) of bonito (Katsuwonus pelamis), and subsequently purified by gel filtration, ion exchange chromatography, and reversed-phase HPLC. The GH was monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by immunoblotting with yellowtail GH antiserum at each step of purification. GH activity was determined by an in vivo bioassay. The yield of this hormone was 4.8 mg/g wet tissue. Intraperitoneal injection of bonito GH at doses of 0.1 and 1 micrograms/g body wt at 7-day intervals resulted in a significant increase in body weight and length of juvenile rainbow trout. Bonito GH antiserum exhibited both species and hormone specificity in radioimmunoassay. However, the bonito GH antiserum as well as yellowtail GH antiserum exhibited hormone specificity but not species specificity in immunoblotting. A molecular weight of 21,000 and an isoelectric point of 7.0 for bonito GH were estimated by SDS-PAGE and gel electrofocusing, respectively. The complete amino acid sequence of 185 residues was determined by sequencing fragment peptides prepared by chemical and enzymatic cleavages. Sequence comparison of bonito GH with other GHs revealed that there is a significant deletion in the middle of the molecule.  相似文献   

19.
C-banded mitotic chromosomes of Katsuwonus pelamis (Linnaeus) were examined by transmission electron microscope (TEM) and results compared with light microscopy images. Advantages of the TEM technique are noted.  相似文献   

20.
Synopsis The biomass of available forage is a key factor in controlling the abundance and distribution of surface tropical tunas, as they have high energy demands and live in a poor environment. The direct estimate of this forage biomass is not possible with existing techniques. Thus we have investigated the lower link, i.e. the plankton organisms which are the food of fishes preyed upon by tunas. In a previous study, this fraction of the zooplankton has been identified, both by taxa and by size, by analysing the stomach contents of the fishes which are the preys of tunas. In this paper, we use 331 plankton samples from tuna fishing grounds of the tropical Indian ocean, to define the characteristics of the planktonic fraction actually participating in the tuna food chain. Main results are as follows: (1) Only 15–27 % of the total zooplanktonic biomass (> 1 mm) is actually accessible for the fishes preyed upon by surface tunas. This useful part of the zooplankton is a well defined fraction of the planktonic population which remains in the 0–170 meters water layer during daylight hours. This part of the zooplankton accounts for a variable percentage of its total biomass the different geographic areas and represents the most relevant parameter to assess the potential richness of a given area for surface tunas. (2) From areas where fishing for surface tunas is poor to those where fishing is successful, it is observed that the total zooplankton biomass increases by a factor of 4 whereas the biomass of the useful fraction increases by a factor of 7. This disproportionate increase is due to the facts that the potential preys of fishes preyed upon by tunas represent a growing fraction of the zooplankton and that a growing proportion of this fraction remains by day in the 0–170 meter water layer, therefore becoming available for the day-feeders which comprise most of the prey-fishes of surface tunas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号