首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of temperature during dormancy development is being reconsidered as more research emerges demonstrating that temperature can significantly influence growth cessation and dormancy development in woody plants. However, there are seemingly contradictory responses to warm and low temperature in the literature. This research/review paper aims to address this contradiction. The impact of temperature was examined in four poplar clones and two dogwood ecotypes with contrasting dormancy induction patterns. Under short day (SD) conditions, warm night temperature (WT) strongly accelerated timing of growth cessation leading to greater dormancy development and cold hardiness in poplar hybrids. In contrast, under long day (LD) conditions, low night temperature (LT) can completely bypass the short photoperiod requirement in northern but not southern dogwood ecotypes. These findings are in fact consistent with the literature in which both coniferous and deciduous woody plant species’ growth cessation, bud set or dormancy induction are accelerated by temperature. The contradictions are addressed when photoperiod and ecotypes are taken into account in which the combination of either SD/WT (northern and southern ecotypes) or LD/LT (northern ecotypes only) are separated. Photoperiod insensitive types are driven to growth cessation by LT. Also consistent is the importance of night temperature in regulating these warm and cool temperature responses. However, the physiological basis for these temperature effects remain unclear. Changes in water content, binding and mobility are factors known to be associated with dormancy induction in woody plants. These were measured using non-destructive magnetic resonance micro-imaging (MRMI) in specific regions within lateral buds of poplar under SD/WT dormancing inducing conditions. Under SD/WT, dormancy was associated with restrictions in inter- or intracellular water movement between plant cells that reduces water mobility during dormancy development. Northern ecotypes of dogwood may be more tolerant to photoinhibition under the dormancy inducing LD/LT conditions compared to southern ecotypes. In this paper, we propose the existence of two separate, but temporally connected processes that contribute to dormancy development in some deciduous woody plant: one driven by photoperiod and influenced by moderate temperatures; the other driven by abiotic stresses, such as low temperature in combination with long photoperiods. The molecular changes corresponding to these two related but distinct responses to temperature during dormancy development in woody plants remains an investigative challenge.  相似文献   

2.
Woody plants in the temperate and boreal zone undergo annual cycle of growth and dormancy under seasonal changes. Growth cessation and dormancy induction in autumn are prerequisites for the development of substantial cold hardiness in winter. During evolution, woody plants have developed different ecotypes that are closely adapted to the local climatic conditions. In this study, we employed distinct photoperiodic ecotypes of silver birch (Betula pendula Roth) to elucidate differences in these adaptive responses under seasonal changes. In all ecotypes, short day photoperiod (SD) initiated growth cessation and dormancy development, and induced cold acclimation. Subsequent low temperature (LT) exposure significantly enhanced freezing tolerance but removed bud dormancy. Our results suggested that dormancy and freezing tolerance might partially overlap under SD, but these two processes were regulated by different mechanisms and pathways under LT. Endogenous abscisic acid (ABA) levels were also altered under seasonal changes; the ABA level was low during the growing season, then increased in autumn, and decreased in winter. Compared with the southern ecotype, the northern ecotype was more responsive to seasonal changes, resulting in earlier growth cessation, cold acclimation and dormancy development in autumn, higher freezing tolerance and faster dormancy release in winter, and earlier bud flush and growth initiation in spring. In addition, although there was no significant ecotypic difference in ABA level during growing season, the rates and degrees of ABA alterations were different between the ecotypes in autumn and winter, and could be related to ecotypic differences in dormancy and freezing tolerance.  相似文献   

3.
Summer‐dormancy occurs in geophytes that inhabit regions with a Mediterranean climate (mild, rainy winters and hot, dry summers). The environmental control of summer‐dormancy and the involvement of phytohormones in its induction have been little studied. Poa bulbosa L. is a perennial grass geophyte in which summer‐dormancy is induced by long days and by high temperature. Prolonged treatment with ABA (0.1‐1.0 m M ) under non‐inductive 8‐h short days (SD) resulted in cessation of leaf and tiller production and in the development of typical features of dormancy: bulbing at the base of the tillers and leaf senescence. Short‐term applications of ABA had similar effects but dormancy was transient, i.e. after a short while, leaf growth from the formed bulbs was resumed. ABA treatment of plants growing under an inductive 16‐h photoperiod (LD) enhanced the onset of dormancy. Endogenous levels of ABA in leaf blades and at the tiller base (where the bulb develops) increased markedly after the plants were transferred from SD to LD. This increase was greater in the tiller base, and concomitant with bulb maturation. High temperature (27/22 vs 22/17°C) accelerated both bulb development and ABA accumulation in leaf blades.
These results suggest that ABA plays a key role in the photoperiodic induction and development of summer‐dormancy in P. bulbosa .  相似文献   

4.
Poa bulbosa L., like many other Mediterranean geophytes, grows in the winter and enters a phase of summer dormancy in the spring. Summer dormancy enables these plants to survive the hot and dry summer. Long days are the main environmental factor active in the induction of summer dormancy in P . bulbosa and elevated temperatures accelerate dormancy development. P . bulbosa becomes dormant earlier than most other species that grow actively in the winter. Previous studies suggested that pre-exposure of P . bulbosa to short days and low temperatures during the autumn and early winter increased its sensitivity to photoperiodic induction in late winter, and thus enabled the early imposition of dormancy. To study this hypothesis, experiments were carried out under controlled photothermal conditions in the phytotron, under natural daylight extended with artificial lighting. The critical photoperiod for induction of summer dormancy at an optimal temperature (22/17°C day/night) was between 11 and 12 h. Photoperiods shorter than 12 h were noninductive, while 14- and 16-h days were fully inductive. A night break of 1 h of light given at the middle of the dark period of an 8-h photoperiod also resulted in full induction of dormancy. Pre-exposure to either low temperature (chilling at 5°C) or to short days of 8 h (SD) enhanced the inductive effect of subsequent 16-h long days (LD). The enhancing effect of chilling and SD increased with longer duration, i.e. fewer LDs were required to impose dormancy. However, the day-length during the low-temperature pretreatment had no effect on the level of induction at the following LD. Chilling followed by SD did not induce dormancy. The relevance of these responses to the development and survival of P . bulbosa in its natural habitat is discussed.  相似文献   

5.
Abstract
  • 1 There is confusion in the literature concerning a possible reproductive diapause in the adult white pine weevil Pissodes strobi.
  • 2 We evaluated the effects of temperature, photoperiod, feeding substrate and mating status on the sexual maturation and oviposition of female white pine weevils.
  • 3 Less than 30% of female P. strobi became sexually mature and laid eggs without experiencing dormancy under a temperature regime of 2 °C for 4 weeks.
  • 4 Among the females that experienced a cold temperature treatment after emergence, 80% laid eggs after dormancy when exposed to a long‐day (LD 16 : 8 h) photoperiod and 17.6% laid eggs when exposed to a short‐day (LD 8 : 16 h) photoperiod.
  • 5 Significantly more eggs were laid by all the females (with and without a cold treatment) when subjected to a long‐day photoperiod compared with a short‐day photoperiod.
  • 6 A period of cold temperature followed by exposure to a long‐day photoperiod with warmer temperatures is required to break reproductive diapause and to obtain a good oviposition response in female P. strobi.
  • 7 This study reveals the existence of much intraspecific variation in the response of the white pine weevil to temperature and photoperiod with respect to the induction and termination of reproductive diapause.
  相似文献   

6.

Background  

In many tree species the perception of short days (SD) can trigger growth cessation, dormancy entrance, and the establishment of a chilling requirement for bud break. The molecular mechanisms connecting photoperiod perception, growth cessation and dormancy entrance in perennials are not clearly understood. The peach [Prunus persica (L.) Batsch] evergrowing (evg) mutant fails to cease growth and therefore cannot enter dormancy under SD. We used the evg mutant to filter gene expression associated with growth cessation after exposure to SD. Wild-type and evg plants were grown under controlled conditions of long days (16 h/8 h) followed by transfer to SD (8 h/16 h) for eight weeks. Apical tissues were sampled at zero, one, two, four, and eight weeks of SD and suppression subtractive hybridization was performed between genotypes at the same time points.  相似文献   

7.
8.
9.
Juvenile trees of temperate and boreal regions cease growth and set buds in autumn in response to short day-lengths (SD) detected by phytochrome. Growth cessation and bud set are prerequisites for the development of winter dormancy and full cold hardiness. In this study we show that the SD-requirement for bud set and cold hardening can be overcome in hybrid aspen (Populus tremula L. × tremuloides Michx.) by low night temperature and inhibition of gibberellin (GA) biosynthesis. Bud set and increased cold hardiness were observed under normally non-inductive long day-length (LD) in wild-type plants, when exposed to low night temperature and paclobutrazol. In addition, the effect of PHYA overexpression could be overcome in transgenic plants, producing bud set and cold acclimation by treatment with: SD, low night temperature and paclobutrazol. After cold acclimation, the degree of bud dormancy was lower for wild-type plants prior treated with LD and transgenic plants (overexpressing PHYA), than SD-treated, wild-type plants. Thus, low night temperature in combination with reduced GA content induced bud set and promoted cold hardiness under normally non-inductive photoperiods in hybrid aspen, but was unable to affect development of dormancy. This might suggest separate signalling pathways from phytochrome regulating the induction of cold/cold hardiness and bud dormancy in hybrid aspen or alternatively, there might be one pathway that fails to complete its action in the transgenic and paclobutrazol treated plants.  相似文献   

10.
Abstract The Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) diapauses as a last‐instar (fifth) larva. At 30 °C, no larvae enter diapause under any photoperiodic conditions; at 25 °C, the photoperiodic response curve is a long‐day type with a critical length of approximately 13 h light; at 20 °C, diapause is induced moderately even under long days (> 13 h). Cumulative effects of short days or long days on diapause induction are determined by alternate, stepwise and gradually changing regimes of photoperiod at 25 °C. When the larvae are repeatedly exposed to LD 16 : 8 h and LD 12 : 12 h photoperiods every other day, the incidence of diapause is 37%. When the larvae are placed under an LD 16 : 8 h photoperiod for 2 days and then under an LD 12 : 12 h photoperiod for 1 day, it is 38 %. Exposure to an LD 16 : 8 h photoperiod for 1 day and then to an LD 12 : 12 h photoperiod for 2 days induces only 15% diapause. This may indicate that the photoperiodic information is not accumulated in a simple fashion despite the generally accepted hypothesis (i.e. photoperiodic counter). Larvae exposed to an LD 16 : 8 h photoperiod for 5 days after oviposition express a very high incidence of diapause even under short days between an LD 2 : 22 h and LD 12 : 12 h photoperiod. After 10 days exposure to an LD 16 : 8 h photoperiod, however, the short day does not induce diapause strongly. On the other hand, an LD 12 : 12 h photoperiod in the early larval life is highly effective in the induction of diapause. A gradual increase or decrease of photoperiod (2 min day?1) shows that the direction of photoperiodic change does not affect the diapause determination.  相似文献   

11.
Uniform 1- or 2-year-old rooted cuttings of 3 Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, clones were grown under natural conditions in containers from July 1, 1971 to February 15, 1972. At 2-week intervals, plants from this natural temperature and daylength environment were moved into controlled, long day (LD-18 h) and short day (SD-9 h) environments to measure the intensity of bud dormancy from its inception to termination based on number of days to bud break and percentage of expanding buds on a given date. Growth responses to bud scale removal were also helpful in describing the degree and nature of bud dormancy. The cessation of initiatory activity at the bud apex, reflected in the needle number of the subsequent growth flush, corresponded to a September peak of bud dormancy based on the number of days to bud break in the LD environment. Similarly, the cold requirement for breaking bud dormancy was measurable in the SD environment. The use of such rest intensity indices is illustrated in the close relationship established between bud dormancy development and stem cutting rooting ability.  相似文献   

12.
13.
14.
Dormancy is initiated by decreasing photoperiod or temperature in many woody species. We investigated the effect of photoperiod on the induction of dormancy in Vitis . Three genotypes ( Vitis riparia, Vitis spp. cv. Seyval Blanc and a F1 hybrid [ V. riparia ×'Seyval Blanc']) were monitored for morphological and physiological dormancy responses during 6 weeks of short (8 h, SD) and long (15 h, LD) photoperiod treatments. V. riparia became dormant after 4 weeks of SD as indicated by several morphologic changes. Cane elongation ceased, terminal meristems began to abscise, and primary dormant buds failed to grow after pruning and returning to LD. There was also a pronounced decrease in bud water content in response to SD. 'Seyval Blanc', in contrast, maintained actively growing meristems with no terminal abscission throughout SD treatment, and little delay in budbreak after pruning and returning to LD. Moderate decreases in bud water content were observed after 6 weeks of SD treatment in 'Seyval Blanc'. F1 plants displayed intermediate responses to SD treatment, but more closely paralleled that of the V. riparia parent. Growth cessation, terminal meristem abscission and absence of budbreak occurred in the F1 after 6 weeks of SD. Ten percent discontinuous SDS-PAGE protein profiles demonstrated SD-induced changes in polypeptide accumulation. A 19-kDa polypeptide increased 2–3-fold in response to SD in all genotypes. A 17-kDa polypeptide appeared at 4 weeks of SD, and represented 2.5–5% of all proteins visualized on the gels by 6 weeks of SD. These increases in polypeptides appear to be a general response to SD. This experimental system with heritable morphological and physiological variations in SD responsiveness will be valuable for studying dormancy initiation and maintenance in Vitis .  相似文献   

15.
Summary Plants ofSilene coeli-rosa given 5 or more long days (LDs) flowered, even when the LDs were followed by 48 hours of darkness before their return to short days (SDs). The mitotic indices of shoot apices from induced plants shortly after induction were significantly higher than the indices of shoot apices from vegetative plants. Two major mitotic peaks were observed in the shoot apices of plants given 7 long days (LDs) on day 8. One coincided with that reported byFrancis andLyndon (1979).Cell to cell movement was tested in the shoot apices of vegetative and LD treated plants using probes with a molecular size of 749 daltons (fluorescein-hexaglycine) and 847 daltons (fluorescein-leucyl diglutamyl leucine). These probes showed some movement in the shoot apices of both short day (SD) and LD treated plants, but fluorescein-leucyl diglutamyl leucine was immobile in the induced apices of 7 LD plants on day 8 at time intervals which coincided with major mitotic activity in the shoot apex. Symplasmic restriction in the shoot apex was also observed in plants given 8 LDs (i.e., plants not returned to SDs on day 7).In plants that were placed in 48 hours of darkness after the 7 LD treatment or in plants given 5 LDs, there was no strong peak in the mitotic index, even though all these LD treatments resulted in 100% flowering. In such plants no symplasmic restriction was found in the shoot. Thus the symplasmic restriction on day 8 of 7 LD plants is associated with the high mitotic index, but neither of these phenomena is an essential part of the evocation process.Abbreviations F(Glu)2 L-glutamylglutamic acid conjugated to fluorescein isothiocyanate isomer I (F-) - F(Gly)6 F-hexaglycine - FLGGL F-leucyl-diglutamyl-leucine - F(PPG)5 F-the pentamer (propyl-propyl glycine) - LD long day - LDs long days - SD short day - SDs short days  相似文献   

16.
R. S. Barros  S. J. Neill 《Planta》1986,168(4):530-535
Aseptically cultured lateral buds of Salix viminalis L. collected from field-grown trees exhibited a clear periodicity in their ability to respond to exogenous abscisic acid (ABA). Buds were kept unopened by ABA only when the plants were dormant or entering dormancy. Short days alone did not induce bud dormancy in potted plants but ABA treatment following exposure to an 8-h photoperiod prevented bud opening although ABA treatment of buds from long-day plants did not. Naturally dormant buds taken from shoots of field-grown trees and cultured in the presence of ABA opened following a chilling treatment. In no cases were the induction and breaking of dormancy and response to ABA correlated with endogenous ABA levels in the buds.Abbreviations ABA abscisic acid - GA3 gibberellic acid - HPLC high-performance liquid chromatography - LD long day - MeABA methyl ABA - PAR photosynthetically active radiation - SD short day  相似文献   

17.
In many woody plants photoperiod signals the initiation of dormancy and cold acclimation. The photoperiod-specific physiological and molecular mechanisms have remained uncharacterised. The role of abscisic acid (ABA) and dehydrins in photope-riod-induced dormancy and freezing tolerance was investigated in birch, Betula pubescens Ehrh. The experiments were designed to investigate if development of dormancy and freezing tolerance under long-day (LD) and short-day (SD) conditions could be affected by manipulation of the endogenous ABA content, and if accumulation of dehydrin-like proteins was correlated with SD and/or the water content of the buds. Experimentally, the internal ABA content was increased by ABA application and by water stress treatment under LD, and decreased by blocking the synthesis of ABA with fluridone under SD. Additionally, high humidity (95% RH) was applied to establish if accidental water stress was involved in SD. ABA content was monitored by gas chromatography-mass spectrometry with selective ion monitoring (SIM). Short days induced a transient increase in ABA content, which was absent in 95% RH, whereas fluridone treatment decreased ABA. Short days induced a typical pattern of bud desiccation and growth cessation regardless of the treatment, and improved freezing tolerance except in the fluridone treatment. ABA content of the buds was significantly increased after spraying ABA on leaves and after water stress, treatments that did not induce cessation of growth and dormancy, but improved freezing tolerance. In addition to several constitutively produced dehydrins, two SD-specific proteins of molecular masses 34 and 36 kDa were found. Photoperiod- and experimentally-induced alterations in ABA contents affected freezing tolerance but not cessation of growth and dormancy. Therefore, involvement of ABA in the photoperiodic control of cold acclimation is more direct than in growth cessation and dormancy. As the typical desiccation pattern of the buds was found in all SD plants, and was not directly related to ABA content or to freezing tolerance, this pattern characterises the onset of photo-period-induced growth cessation and dormancy. The results provide evidence for the existence of various constitutively and two photoperiod-induced dehydrins in buds of birch, and reveal characteristics of dormancy and freezing tolerance that may facilitate further investigations of photoperiodic control of growth in trees.  相似文献   

18.
Dual Floral Induction Requirements in Phleum alpinum   总被引:2,自引:0,他引:2  
HEIDE  O. M. 《Annals of botany》1990,66(6):687-694
Flowering requirements of four Norwegian populations of Phleumalpinum were studied in controlled environments. A dual inductionrequirement was demonstrated in all populations. Inflorescenceinitiation had an obligatory requirement for short days (SD)and/or low temperature, while culm elongation and heading wereenhanced by long days (LD) and higher temperatures. At 3 and6 °C primary induction was almost independent of photoperiod,whereas SD was more effective than LD at higher temperatures.The critical temperature for primary induction was about 15°C in SD and 12 °C in LD. Saturation of induction required12 weeks of exposure to inductive conditions, although someheading and flowering took place with 6 weeks exposure to optimalconditions (9 °C/SD). Inflorescence development also tookplace in 8 h SD although it was delayed and culm elongationwas strongly inhibited compared with LD conditions. Only smalldifferences in flowering response were found between the populations. Phleum alpinum L., alpine timothy, dual floral induction, flowering, photoperiod, temperature  相似文献   

19.

Background and Aims

Summer dormancy is a trait conferring superior drought survival in Mediterranean perennial grasses. As the respective roles of environmental factors and water deficit on induction of summer dormancy are unclear, the effect of intense drought were tested under contrasting day lengths in a range of forage and native grasses.

Methods

Plants of Poa bulbosa, Dactylis glomerata ‘Kasbah’ and Lolium arundinaceum ‘Flecha’ were grown in pots (a) from winter to summer in a glasshouse and subjected to either an early or a late-spring drought period followed by a summer water deficit and (b) in controlled conditions, with long days (LD, 16 h) or short days (SD, 9 h) and either full irrigation or water deficit followed by rehydration. Leaf elongation, senescence of aerial tissues and dehydration of basal tissues were measured to assess dormancy. Endogenous abscisic acid (ABA) in basal tissues was determined by monoclonal immunoassay analysis.

Key Results

Even under irrigation, cessation of leaf elongation, senescence of lamina and relative dehydration of basal tissues were triggered only by a day length longer than 13 h 30 min (late spring and LD) in plants of Poa bulbosa and Dactylis glomerata ‘Kasbah’ which exhibit complete dormancy. Plants of Lolium arundinaceum ‘Flecha’ maintained leaf growth under irrigation irrespective of the day length since its dormancy is incomplete. ABA concentrations were not higher during late-spring drought than early, and could not be associated with spring dormancy induction. In summer, ABA concentration in bulbs of the desiccation-tolerant Poa were greater than in basal tissues of other species.

Conclusions

The results of both experiments tend to invalidate the hypothesis that water deficit has a role in early summer-dormancy induction in the range of tested grasses. However, a late-spring drought tends to increase plant senescence and ABA accumulation in basal tissues of forage grasses which could enhance summer drought survival.Key words: Poa bulbosa, Dactylis glomerata, Lolium arundinaceum, abscisic acid, water deficit, photoperiod, summer dormancy, perennial grass  相似文献   

20.
To manipulate the occurrence of latewood formation and cambial dormancy in Picea abies (L.) Karst. stems, potted seedlings were transferred from the natural environment on 9 July, when tracheids early in the transition between earlywood and latewood were being produced, and cultured for up to 5 weeks in a controlled environment chamber having: (1) Warm LD, (25/15C during day/night) and long (16 h) photoperiod, (2) Warm SD, (25/15C) and short (8 h) photoperiod, or (3) Cold SD, (18/8°C) and short (8 h) photoperiod. In Warm LD trees, the radial enlargement of primary-walled derivatives on the xylem side of the cambium, as well as xylem production, continued at the same magnitude throughout the experiment. In Warm SD and Cold SD trees, the radial enlargement of primary-walled derivatives declined and the cambium entered dormancy, both developments occurring faster in the Warm SD trees. The concentrations of indole-3-acetic acid (IAA) was higher in developing xylem tissue than in cambium+phloem tissues, but did not vary with environmental treatment or decrease during the experimental period. The O2 concentration in the cambial region followed the order of Cold SD>Warm SD>Warm LD trees and was <5%, the threshold for the inhibition of IAA-induced proton secretion, for the first 3 weeks in Warm SD and Warm LD trees. Thus, neither latewood formation nor cambial dormancy can be attributed to decreased IAA in the cambial region. Nor does lower O2 concentration in the cambial region appear to be inhibiting the IAA action that is associated with cambial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号