首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitin/proteasome-dependent protein degradation pathway (UPP) is responsible for the accelerated down-regulation of glucocorticoid receptor (GR) levels in cells subjected to chronic glucocorticoid exposure. Whereas hormone-dependent down-regulation of GR operates in most cells, the receptor is not down-regulated after long-term glucocorticoid treatment of either cultured embryonic hippocampal neurons or the HT22 hippocampal cell line. In this report, we show that stable overexpression of the carboxy terminus of heat shock protein 70-interacting protein (CHIP) E3 ligase can restore hormone-dependent down-regulation of GR in HT22 cells. Proteasome inhibitor studies establish that ubiquitylated GR can be efficiently engaged with the proteasome upon CHIP overexpression, unlike the case in parental HT22 cells. In addition to its impact on GR down-regulation, CHIP overexpression alters the coupling between the UPP and GR transactivation. Unlike other steroid receptors whose transactivation properties are typically reduced upon proteasome inhibition, GR transactivation in HT22 cells and other cell lines is enhanced upon proteasome inhibition. However, in HT22 cells overexpressing CHIP, proteasome inhibition leads to a reduction in GR transactivation activity. Thus, the divergent response of a single transactivator (i.e. GR) to the UPP can be dictated by CHIP, an E3 ligase that also functions as a proteasome-targeting factor.  相似文献   

2.
Expression of the p85gag-mos oncoprotein in temperature sensitive transformed 6m2 cells results in desensitization of glucocorticoid induction of metallothionein-1 mRNA. Indirect immunofluorescence analyses demonstrate that hormone insensitivity in v-mos transformed cells is associated with inefficient nuclear retention of glucocorticoid receptor (GR) protein. Desensitized receptors that accumulate in the cytoplasm of transformed 6m2 cells do not regain the capacity for hormone-dependent nuclear translocation after turnover of the thermo-labile p85gag-mos oncoprotein. Although ligand induced down-regulation of immunoreactive GR protein occurs in transformed 6m2 cells, desensitized receptors appear to retain some capacity to bind hormone in vivo. Thus alterations in the intracellular partitioning of GR protein in v-mos-transformed cells result in the generation of a novel desensitized receptor that is apparently trapped in the cytoplasm and incapable of being reutilized.  相似文献   

3.
4.
5.
Glucocorticoid receptors (GRs) are shuttling proteins, yet they preferentially accumulate within either the cytoplasmic or nuclear compartment when overall rates of nuclear import or export, respectively, are limiting. Hormone binding releases receptors from stable heteromeric complexes that restrict their interactions with soluble nuclear import factors and contribute to their cytoplasmic retention. Although hormone dissociation leads to the rapid release of GRs from chromatin, unliganded nuclear receptors are delayed in their export. We have used a chimeric GR that contains a heterologous, leucine-rich nuclear export signal sequence (NES) to assess the consequences of accelerated receptor nuclear export. Leucine-rich NESs utilize the exportin 1/CRM1-dependent nuclear export pathway, which can be blocked by leptomycin B (LMB). The fact that rapid nuclear export of the NES-GR chimera, but not the protracted export of wild-type GR, is sensitive to LMB, suggests that GR does not require the exportin 1/CRM1 pathway to exit the nucleus. Despite its more rapid export, the NES-GR chimera appears indistinguishable from wild-type GR in its transactivation activity in transiently transfected cells. However, accelerated nuclear export of the NES-GR chimera is associated with an increased rate of hormone-dependent down-regulation. The increase in NES-GR down-regulation is overcome by LMB treatment, thereby confirming the connection between receptor nuclear export and down-regulation. Given the presence of a nuclear recycling pathway for GR, the protracted rate of receptor nuclear export may increase the efficiency of biological responses to secondary hormone challenges by limiting receptor down-regulation and hormone desensitization.  相似文献   

6.
7.
Dehydroepiandrosterone (DHEA), an adrenal cortex hormone secreted in large quantities in humans, protects cells of the clonal mouse hippocampal cell line HT-22 against the excitatory amino acid glutamate (5 mM), and amyloid beta-protein (2 microM) toxicity in a dose-dependent manner with optimum protection obtained at 5 microM concentration of DHEA. The protective effects of DHEA appear to be specific in that other related steroids and metabolites of DHEA, such as 5-androstene-3beta,17beta-diol, etiocholan-3alpha-ol-17-one, etiocholan-3beta-ol-17-one, testosterone, and 5alpha-androstane-3, 17-dione, offered no protection even at 50 microM concentrations. In addition, using immunocytochemical techniques, we observed that 20 hr of treatment with 5 mM glutamate remarkably increased glucocorticoid receptor (GR) nuclear localization in neuronal cells. Interestingly, 5 microM DHEA treatment for 24 hr, followed by 5 mM glutamate treatment for 20 hr almost completely reversed the copious nuclear localization of GR observed by glutamate treatment alone. Results obtained suggest that DHEA protects hippocampal neurons, at least in part, by its antiglucocorticoid action via decreasing hippocampal cells nuclear GR levels.  相似文献   

8.
9.
10.
We examined the effects of the purified ginseng components, panaxadiol (PD) and panaxatriol (PT), on the expression of matrix metalloproteinase-9 (MMP-9) in highly metastatic HT1080 human fibrosarcoma cell line. A significant down-regulation of MMP-9 by PD and PT was detected by Northern blot analysis. However, the expression of MMP-2 was not changed by treatment with PD and PT. Quantitative gelatin based zymography confirmed a markedly reduced expression of MMP-9, but not MMP-2 in the treatment of PD and PT. To investigate whether the reduced level of MMP-9 by PD and PT affects the invasive capacity of HT1080 cells, we conducted an in vitro invasion assay with PD and PT treated cells. The results of the in vitro invasion assay revealed that PD and PT reduced tumor cell invasion through a reconstituted basement membrane in the transwell chamber. Because of the similarity of chemical structure between PD, PT and dexamethasone (Dexa), a synthetic glucocorticoid, we investigated whether the down-regulation of MMP-9 by PD and PT were mediated by the nuclear translocation of glucocorticoid receptor (GR). Increased GR in the nucleus of HT1080 human fibrosarcoma cells treated by PD and PT was detected by immunocytochemistry. Western blot and gel retardation assays confirmed the increase of GR in the nucleus after treatment with PD and PT. These results suggest that GR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT1080 cells.  相似文献   

11.
12.
In the brain, the action of glucocorticoid steroids is mediated via two intracellular receptors, the mineralocorticoid (MR), or type I receptor, and the glucocorticoid (GR), or type II receptor. These receptors are expressed in many types of neurons and are co-expressed in some neurons such as the hippocampal pyramidal cells. Although glucocorticoids are known to affect gliogenesis and glial cell differentiation, the expression of the GR in different types of glial cells throughout the brain has not been thoroughly studied and the expression of the MR in glia not previously reported. Here we review studies suggesting that both receptors are expressed in astrocytes and oligodendrocytes.  相似文献   

13.
The stigmoid body (STB) is a cytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), and HAP1/STB formation is induced by transfection of the HAP1 gene into cultured cells. In the present study, we examined the intracellular colocalization of HAP1/STBs with steroid hormone receptors (SHRs), including the androgen receptor (AR), estrogen receptor, glucocorticoid receptor (GR), and mineralocorticoid receptor, in COS-7 cells cotransfected with HAP1 and each receptor. We found that C-terminal ligand-binding domains of all SHRs had potential for colocalization with HAP1/STBs, whereas only AR and GR were clearly colocalized with HAP1/STBs when each full-length SHR was coexpressed with HAP1. In addition, it appeared that HAP1/STBs did not disrupt GR and AR functions because the receptors on HAP1/STBs maintained nuclear translocation activity in response to their specific ligands. When the cells were treated with a proteasome inhibitor, GR and AR localized outside HAP1/STBs translocated into the nucleus, whereas the receptors colocalized with HAP1/STBs persisted in their colocalization even after treatment with their ligands. Therefore, HAP1/STBs may be involved in cytoplasmic modifications of the nuclear translocation of GR and AR in a ubiquitin–proteasome system.  相似文献   

14.
15.
16.
In the HT22 mouse hippocampal cell line and primary immature embryonic rat cortical neurons, glutamate-induced oxidative toxicity is associated with a delayed but chronic activation of extracellular signal-regulated kinase-1/2 (ERK-1/2). ERK-1/2 is also activated in HT22 cells that undergo caspase-dependent cell death upon inhibition of proteasome-dependent protein degradation brought about by MG132 treatment. As in glutamate-treated HT22 cells and primary neurons, inhibition of MEK-1, an upstream activator of ERK-1/2 protects against MG132-induced toxicity. Furthermore, activated ERK-1/2 is retained within the nucleus in glutamate- and MG132-treated HT22 cells. Although previous studies suggested that ERK-1/2 activation was downstream of many cell death-inducing signals in HT22 cells, we show here that cycloheximide, the Z-vad caspase inhibitor, and a nonlethal heat shock protect against glutamate- and MG132-induced toxicity without diminishing ERK-1/2 activation. In these cases, ERK-1/2, although chronically activated, is not retained within the nucleus but accumulates within the cytoplasm. Thus, persistent nuclear retention of activated ERK-1/2 may be a critical factor in eliciting proapoptotic effects in neuronal cells subjected to oxidative stress or proteasome inhibition.  相似文献   

17.
18.
In v-mos transformed cells, glucocorticoid receptor (GR) proteins that bind hormone agonist are not efficiently retained within nuclei and redistribute to the cytoplasmic compartment. These cytoplasmic desensitized receptors cannot be reutilized and may represent trapped intermediates derived from GR recycling. We have used the glucocorticoid antagonist RU486 to examine whether v-mos effects can be exerted on any ligand-bound GR. In the rat 6m2 cell line that expresses a temperature-sensitive p85gag-mos oncoprotein, RU486 is a complete antagonist and suppresses dexamethasone induction of metallothionein-1 mRNA at equimolar concentrations. Using indirect immunofluorescence, we observe efficient nuclear translocation of GR in response to RU486 treatment in either the presence or absence of v-mos oncoproteins. However, in contrast to the redistribution of agonist-bound nuclear receptors to the cytoplasm of v-mos-transformed cells, RU486-bound GRs are efficiently retained within nuclei. Interestingly, withdrawal of RU486 does not lead to efficient depletion of nuclear GR in either nontransformed or v-mos transformed cells. It is only after the addition of hormone agonist to RU486 withdrawn v-mos-transformed cells that GRs are depleted from nuclei and subsequently redistributed to the cytoplasm. Thus, only nuclear GRs that are agonist-bound and capable of modulating gene activity can be subsequently processed and recycled into the cytoplasm.  相似文献   

19.
Steroid hormones are regulators of adult hippocampal neurogenesis and are central to hypotheses regarding adult neurogenesis in age-related and psychiatric disturbances associated with altered hippocampal plasticity--most notably dementias and major depression. Using immunohistochemistry, we examined the expression of glucocorticoid (GR) and mineralocorticoid (MR) receptors during adult hippocampal neurogenesis. In young mice only 27% of dividing cells in the subgranular zone expressed GR, whereas 4 weeks after division 87% had become positive for GR and MR. GR was expressed by 50% of the radial glia-like type-1 and type-2a progenitor cells, whereas MR was expressed only by mature calbindin-positive granule cells. Doublecortin-positive neuronal progenitor cells (type-2b) and early postmitotic calretinin-positive neurons were devoid of GR and MR expression. Fifty per cent of the intermediate type-3 cells showed GR expression, possibly reflecting cells terminating maturation. Thus, all subpopulations of dividing precursor cells showed an identical receptor profile (50% GR, no MR), except for type-2b cells, which expressed neither receptor. There was also no overlap between calretinin and GR early postnatally (P8) or after physical activity or exposure to an enriched environment, both of which are potent neurogenic stimuli. In contrast, in old age calretinin-positive young neurons became GR and MR positive, suggesting increased steroid sensitivity. Age also increased the expression of GR in type-1 and type-2a precursor cells. Other intermediates were so rare in old age that they could not be studied. This course and variability of receptor expression in aging might help to explain differential vulnerability of adult neural precursor cells to corticoid-mediated influences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号