首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lupp C  Ruby EG 《Journal of bacteriology》2005,187(11):3620-3629
Vibrio fischeri possesses two quorum-sensing systems, ain and lux, using acyl homoserine lactones as signaling molecules. We have demonstrated previously that the ain system activates luminescence gene expression at lower cell densities than those required for lux system activation and that both systems are essential for persistent colonization of the squid host, Euprymna scolopes. Here, we asked whether the relative contributions of the two systems are also important at different colonization stages. Inactivation of ain, but not lux, quorum-sensing genes delayed initiation of the symbiotic relationship. In addition, our data suggest that lux quorum sensing is not fully active in the early stages of colonization, implying that this system is not required until later in the symbiosis. The V. fischeri luxI mutant does not express detectable light levels in symbiosis yet initiates colonization as well as the wild type, suggesting that ain quorum sensing regulates colonization factors other than luminescence. We used a recently developed V. fischeri microarray to identify genes that are controlled by ain quorum sensing and could be responsible for the initiation defect. We found 30 differentially regulated genes, including the repression of a number of motility genes. Consistent with these data, ain quorum-sensing mutants displayed an altered motility behavior in vitro. Taken together, these data suggest that the sequential activation of these two quorum-sensing systems with increasing cell density allows the specific regulation of early colonization factors (e.g., motility) by ain quorum sensing, whereas late colonization factors (e.g., luminescence) are preferentially regulated by lux quorum sensing.  相似文献   

3.
4.
Production of bioluminescence theoretically represents a cost, energetic or otherwise, that could slow Vibrio fischeri growth; however, bioluminescence is also thought to enable full symbiotic colonization of the Euprymna scolopes light organ by V. fischeri. Previous tests of these models have proven inconclusive, partly because they compared nonisogenic strains, or undefined and/or pleiotropic mutants. To test the influence of the bioluminescence-producing lux operon on growth and symbiotic competence, we generated dark luxCDABEG mutants in strains MJ1 and ES114 without disrupting the luxR-luxI regulatory circuit. The MJ1 luxCDABEG mutant out-competed its visibly luminescent parent approximately 26% per generation in a carbon-limited chemostat. Similarly, induction of luminescence in the otherwise dim ES114 strain slowed growth relative to DeltaluxCDABEG mutants. Some culture conditions yielded no detectable effect of luminescence on growth, indicating that luminescence is not always growth limiting; however, luminescence was never found to confer an advantage in culture. In contrast to this conditional disadvantage of lux expression, ES114 achieved approximately fourfold higher populations than its luxCDABEG mutant in the light organ of E. scolopes. These results demonstrate that induction of luxCDABEG can slow V. fischeri growth under certain culture conditions and is a positive symbiotic colonization factor.  相似文献   

5.
6.
7.
Vibrio fischeri, a luminescent marine bacterium, specifically colonizes the light organ of its symbiotic partner, the Hawaiian squid Euprymna scolopes. In a screen for V. fischeri colonization mutants, we identified a strain that exhibited on average a 10-fold decrease in colonization levels relative to that achieved by wild-type V. fischeri. Further characterization revealed that this defect did not result from reduced luminescence or motility, two processes required for normal colonization. We determined that the transposon in this mutant disrupted a gene with high sequence identity to the pgm (phosphoglucomutase) gene of Escherichia coli, which encodes an enzyme that functions in both galactose metabolism and the synthesis of UDP-glucose. The V. fischeri mutant grew poorly with galactose as a sole carbon source and was defective for phosphoglucomutase activity, suggesting functional identity between E. coli Pgm and the product of the V. fischeri gene, which was therefore designated pgm. In addition, lipopolysaccharide profiles of the mutant were distinct from that of the parent strain and the mutant exhibited increased sensitivity to various cationic agents and detergents. Chromosomal complementation with the wild-type pgm allele restored the colonization ability to the mutant and also complemented the other noted defects. Unlike the pgm mutant, a galactose-utilization mutant (galK) of V. fischeri colonized juvenile squid to wild-type levels, indicating that the symbiotic defect of the pgm mutant is not due to an inability to catabolize galactose. Thus, pgm represents a new gene required for promoting colonization of E. scolopes by V. fischeri.  相似文献   

8.
9.
Repeated attempts to clone the luxI from Vibrio fischeri ATCC 49387 failed to produce a clone carrying a functional LuxI. Sequence data from the clones revealed the presence of a polymorphism when compared with previously published luxI sequences, prompting further characterization of bioluminescence regulation in V. fischeri ATCC 49387. Further investigation of V. fischeri ATCC 49387 revealed that its LuxI protein lacks detectable LuxI activity due to the presence of a glutamine residue at position 125 in the deduced amino acid sequence. Specific bioluminescence in V. fischeri ATCC 49387 increases with increasing cell density, indicative of a typical autoinduction response. However, conditioned medium from this strain does not induce bioluminescence in an ATCC 49387 luxR-plux-based acyl homoserine lactone reporter strain, but does induce bioluminescence in ATCC 49387. It has been previously shown that a V. fischeri MJ-1 luxI mutant exhibits autoinduction of bioluminescence through N-octanoyl-L-homoserine lactone, the product of the AinS autoinducer synthase. However, a bioreporter based on luxR-plux from V. fischeri ATCC 49387 responded poorly to conditioned medium from V. fischeri ATCC 49387 and also responded poorly to authentic N-octanoyl-DL-homoserine lactone. A similar MJ-1-based bioreporter showed significant induction under the same conditions. A putative ainS gene cloned from ATCC 49387, unlike luxI from ATCC 49387, expresses V. fischeri autoinducer synthase activity in Escherichia coli. This study suggests that a regulatory mechanism independent of LuxR and LuxI but possibly involving AinS is responsible for the control of autoinduction of bioluminescence in V. fischeri ATCC 49387.  相似文献   

10.
11.
12.
13.
Acylhomoserine lactones, which serve as quorum-sensing signals in gram-negative bacteria, are produced by members of the LuxI family of synthases. LuxI is a Vibrio fischeri enzyme that catalyzes the synthesis of N-(3-oxohexanoyl)-L-homoserine lactone from an acyl-acyl carrier protein and S-adenosylmethionine. Another V. fischeri gene, ainS, directs the synthesis of N-octanoylhomoserine lactone. The AinS protein shows no significant sequence similarity with LuxI family members, but it does show sequence similarity with the Vibrio harveyi LuxM protein. The luxM gene is required for the synthesis of N-(3-hydroxybutyryl)-L-homoserine lactone. To gain insights about whether AinS and LuxM represent a second family of acylhomoserine lactone synthases, we have purified AinS as a maltose-binding protein (MBP) fusion protein. The purified MBP-AinS fusion protein catalyzed the synthesis of N-octanoylhomoserine lactone from S-adenosylmethionine and either octanoyl-acyl carrier protein or, to a lesser extent, octanoyl coenzyme A. With the exception that octanoyl coenzyme A served as an acyl substrate for the MBP-AinS fusion protein, the substrates for and reaction kinetics of the MBP-AinS fusion protein were similar to those of the several LuxI family members previously studied. We conclude that AinS is an acylhomoserine lactone synthase and that it represents a second family of such enzymes.  相似文献   

14.
15.
AI-3 synthesis is not dependent on luxS in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The quorum-sensing (QS) signal autoinducer-2 (AI-2) has been proposed to promote interspecies signaling in a broad range of bacterial species. AI-2 is spontaneously derived from 4,5-dihydroxy-2,3-pentanedione that, along with homocysteine, is produced by cleavage of S-adenosylhomocysteine (SAH) and S-ribosylhomocysteine by the Pfs and LuxS enzymes. Numerous phenotypes have been attributed to AI-2 QS signaling using luxS mutants. We have previously reported that the luxS mutation also affects the synthesis of the AI-3 autoinducer that activates enterohemorrhagic Escherichia coli virulence genes. Here we show that several species of bacteria synthesize AI-3, suggesting a possible role in interspecies bacterial communication. The luxS mutation leaves the cell with only one pathway, involving oxaloacetate and l-glutamate, for de novo synthesis of homocysteine. The exclusive use of this pathway for homocysteine production appears to alter metabolism in the luxS mutant, leading to decreased levels of AI-3. The addition of aspartate and expression of an aromatic amino acid transporter, as well as a tyrosine-specific transporter, restored AI-3-dependent phenotypes in an luxS mutant. The defect in AI-3 production, but not in AI-2 production, in the luxS mutant was restored by expressing the Pseudomonas aeruginosa S-adenosylhomocysteine hydrolase that synthesizes homocysteine directly from SAH. Furthermore, phenotype microarrays revealed that the luxS mutation caused numerous metabolic deficiencies, while AI-3 signaling had little effect on metabolism. This study examines how AI-3 production is affected by the luxS mutation and explores the roles of the LuxS/AI-2 system in metabolism and QS.  相似文献   

16.
Many bacteria control gene expression in response to cell population density, and this phenomenon is called quorum sensing. In Gram-negative bacteria, quorum sensing typically involves the production, release and detection of acylated homoserine lactone signalling molecules called autoinducers. Vibrio harveyi, a Gram-negative bioluminescent marine bacterium, regulates light production in response to two distinct autoinducers (AI-1 and AI-2). AI-1 is a homoserine lactone. The structure of AI-2 is not known. We have suggested previously that V. harveyi uses AI-1 for intraspecies communication and AI-2 for interspecies communication. Consistent with this idea, we have shown that many species of Gram-negative and Gram-positive bacteria produce AI-2 and, in every case, production of AI-2 is dependent on the function encoded by the luxS gene. We show here that LuxS is the AI-2 synthase and that AI-2 is produced from S-adenosylmethionine in three enzymatic steps. The substrate for LuxS is S-ribosylhomocysteine, which is cleaved to form two products, one of which is homocysteine, and the other is AI-2. In this report, we also provide evidence that the biosynthetic pathway and biochemical intermediates in AI-2 biosynthesis are identical in Escherichia coli, Salmonella typhimurium, V. harveyi, Vibrio cholerae and Enterococcus faecalis. This result suggests that, unlike quorum sensing via the family of related homoserine lactone autoinducers, AI-2 is a unique, 'universal' signal that could be used by a variety of bacteria for communication among and between species.  相似文献   

17.
While much has been known about the mutualistic associations between the sepiolid squid Euprymna tasmanica and the luminescent bacterium, Vibrio fischeri , less is known about the connectivity between the microscopic and molecular basis of initial attachment and persistence in the light organ. Here, we examine the possible effects of two symbiotic genes on specificity and biofilm formation of V. fischeri in squid light organs. Uridine diphosphate glucose-6-dehydrogenase (UDPDH) and mannose-sensitive hemagglutinin ( mshA ) mutants were generated in V. fischeri to determine whether each gene has an effect on host colonization, specificity, and biofilm formation. Both squid light organ colonization assays and transmission electron microscopy confirmed differences in host colonization between wild-type and mutant strains, and also demonstrated the importance of both UDPDH and mshA gene expression for successful light organ colonization. This furthers our understanding of the genetic factors playing important roles in this environmentally transmitted symbiosis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号