首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a generalisation of Moran’s population-genetic model that incorporates density dependence. Rather than assuming fixed population size, we allow the number of individuals to vary stochastically with the same events that change allele number, according to a logistic growth process with density dependent mortality. We analyse the expected time to absorption and fixation in the ‘quasi-neutral’ case: both types have the same carrying capacity, achieved through a trade-off of birth and death rates. Such types would be competitively neutral in a classical, fixed-population Wright-Fisher model. Nonetheless, we find that absorption times are skewed compared to the Wright-Fisher model. The absorption time is longer than the Wright-Fisher prediction when the initial proportion of the type with higher birth rate is large, and shorter when it is small. By contrast, demographic stochasticity has no effect on the fixation or absorption times of truly neutral alleles in a large population. Our calculations provide the first analytic results on hitting times in a two-allele model, when the population size varies stochastically.  相似文献   

2.
The Wright–Fisher model of allele dynamics forms the basis for most theoretical and applied research in population genetics. Our understanding of genetic drift, and its role in suppressing the deterministic forces of Darwinian selection has relied on the specific form of sampling inherent to the Wright–Fisher model and its diffusion limit. Here we introduce and analyze a broad class of forward-time population models that share the same mean and variance as the Wright–Fisher model, but may otherwise differ. The proposed class unifies and further generalizes a number of population-genetic processes of recent interest, including the Λ and Cannings processes. Even though these models all have the same variance effective population size, they encode a rich diversity of alternative forms of genetic drift, with significant consequences for allele dynamics. We characterize in detail the behavior of standard population-genetic quantities across this family of generalized models. Some quantities, such as heterozygosity, remain unchanged; but others, such as neutral absorption times and fixation probabilities under selection, deviate by orders of magnitude from the Wright–Fisher model. We show that generalized population models can produce startling phenomena that differ qualitatively from classical behavior — such as assured fixation of a new mutant despite the presence of genetic drift. We derive the forward-time continuum limits of the generalized processes, analogous to Kimura’s diffusion limit of the Wright–Fisher process, and we discuss their relationships to the Kingman and non-Kingman coalescents. Finally, we demonstrate that some non-diffusive, generalized models are more likely, in certain respects, than the Wright–Fisher model itself, given empirical data from Drosophila populations.  相似文献   

3.

In this article we consider diffusion processes modeling the dynamics of multiple allelic proportions (with fixed and varying population size). We are interested in the way alleles extinctions and fixations occur. We first prove that for the Wright–Fisher diffusion process with selection, alleles get extinct successively (and not simultaneously), until the fixation of one last allele. Then we introduce a very general model with selection, competition and Mendelian reproduction, derived from the rescaling of a discrete individual-based dynamics. This multi-dimensional diffusion process describes the dynamics of the population size as well as the proportion of each type in the population. We prove first that alleles extinctions occur successively and second that depending on population size dynamics near extinction, fixation can occur either before extinction almost surely, or not. The proofs of these different results rely on stochastic time changes, integrability of one-dimensional diffusion processes paths and multi-dimensional Girsanov’s tranform.

  相似文献   

4.
We extend the one-locus two allele Moran model of fixation in a haploid population to the case where the total size of the population is not fixed. The model is defined as a two-dimensional birth-and-death process for allele number. Changes in allele number occur through density-independent death events and birth events whose per capita rate decreases linearly with the total population density. Uniquely for models of this type, the latter is determined by these same birth-and-death events. This provides a framework for investigating both the effects of fluctuation in total population number through demographic stochasticity, and deterministic density-dependent changes in mean density, on allele fixation. We analyze this model using a combination of asymptotic analytic approximations supported by numerics. We find that for advantageous mutants demographic stochasticity of the resident population does not affect the fixation probability, but that deterministic changes in total density do. In contrast, for deleterious mutants, the fixation probability increases with increasing resident population fluctuation size, but is relatively insensitive to initial density. These phenomena cannot be described by simply using a harmonic mean effective population size.  相似文献   

5.
We consider the classical Wright–Fisher model of population genetics. We prove the existence of an error threshold for the mutation probability per nucleotide, below which a quasispecies is formed. We show a new phenomenon, specific to a finite population model, namely the existence of a population threshold: to ensure the stability of the quasispecies, the population size has to be at least of the same order as the genome length. We derive an explicit formula describing the quasispecies.  相似文献   

6.
We consider the Wright–Fisher model for a population of $N$ individuals, each identified with a sequence of a finite number of sites, and single-crossover recombination between them. We trace back the ancestry of single individuals from the present population. In the $N \rightarrow \infty $ limit without rescaling of parameters or time, this ancestral process is described by a random tree, whose branching events correspond to the splitting of the sequence due to recombination. With the help of a decomposition of the trees into subtrees, we calculate the probabilities of the topologies of the ancestral trees. At the same time, these probabilities lead to a semi-explicit solution of the deterministic single-crossover equation. The latter is a discrete-time dynamical system that emerges from the Wright–Fisher model via a law of large numbers and has been waiting for a solution for many decades.  相似文献   

7.
The probability of, and time to, fixation of a mutation in a population has traditionally been studied by the classic Wright–Fisher model where population size is constant. Recent theoretical expansions have covered fluctuating populations in various ways but have not incorporated models of how the environment fluctuates in combination with different levels of density-compensation affecting fecundity. We tested the hypothesis that the probability of, and time to, fixation of neutral, advantageous and deleterious mutations is dependent on how the environment fluctuates over time, and on the level of density-compensation. We found that fixation probabilities and times were dependent on the pattern of autocorrelation of carrying capacity over time and interacted with density-compensation. The pattern found was most pronounced at small population sizes. The patterns differed greatly depending on whether the mutation was neutral, advantageous, or disadvantageous. The results indicate that the degree of mismatch between carrying capacity and population size is a key factor, rather than population size per se, and that effective population sizes can be very low also when the census population size is far above the carrying capacity. This study highlights the need for explicit population dynamic models and models for environmental fluctuations for the understanding of the dynamics of genes in populations.  相似文献   

8.
Journal of Mathematical Biology - The Moran discrete process and the Wright–Fisher model are the most popular models in population genetics. The Wright–Fisher diffusion is commonly used...  相似文献   

9.
Important aspects of population evolution have been investigated using nucleotide sequences. Under the neutral Wright–Fisher model, the scaled mutation rate represents twice the average number of new mutations per generations and it is one of the key parameters in population genetics. In this study, we present various methods of estimation of this parameter, analytical studies of their asymptotic behavior as well as comparisons of the distribution's behavior of these estimators through simulations. As knowledge of the genealogy is needed to estimate the maximum likelihood estimator (MLE), an application with real data is also presented, using jackknife to correct the bias of the MLE, which can be generated by the estimation of the tree. We proved analytically that the Waterson's estimator and the MLE are asymptotically equivalent with the same rate of convergence to normality. Furthermore, we showed that the MLE has a better rate of convergence than Waterson's estimator for values of the parameter greater than one and this relationship is reversed when the parameter is less than one.  相似文献   

10.
11.
We determine fixation probabilities in a model of two competing types with density dependence. The model is defined as a two-dimensional birth-and-death process with density-independent death rates, and birth rates that are a linearly decreasing function of total population density. We treat the 'quasi-neutral case' where both types have the same equilibrium population densities. This condition results in birth rates that are proportional to death rates. This can be viewed as a life history trade-off. The deterministic dynamics possesses a stable manifold of mixtures of the two types. We show that the fixation probability is asymptotically equal to the fixation probability at the point where the deterministic flow intersects this manifold. The deterministic dynamics predicts an increase in the proportion of the type with higher birth rate in growing populations (and a decrease in shrinking populations). Growing (shrinking) populations therefore intersect the manifold at a higher (lower) than initial proportion of this type. On the center manifold, the fixation probability is a quadratic function of initial proportion, with a disadvantage to the type with higher birth rate. This disadvantage arises from the larger fluctuations in population density for this type. These results are asymptotically exact and have relevance for allele fixation, models of species abundance, and epidemiological models.  相似文献   

12.
We systematically investigate the Wright–Fisher model of population genetics with the free energy functional formalism of statistical mechanics and in the light of recent mathematical work on the connection between Fokker–Planck equations and free energy functionals. In statistical physics, entropy increases, or equivalently, free energy decreases, and the asymptotic state is given by a Gibbs-type distribution. This also works for the Wright–Fisher model when rewritten in divergence to identify the correct free energy functional. We not only recover the known results about the stationary distribution, that is, the asymptotic equilibrium state of the model, in the presence of positive mutation rates and possibly also selection, but can also provide detailed formulae for the rate of convergence towards that stationary distribution. In the present paper, the method is illustrated for the simplest case only, that of two alleles.  相似文献   

13.
We study a class of processes that are akin to the Wright–Fisher model, with transition probabilities weighted in terms of the frequency-dependent fitness of the population types. By considering an approximate weak formulation of the discrete problem, we are able to derive a corresponding continuous weak formulation for the probability density. Therefore, we obtain a family of partial differential equations for the evolution of the probability density, and which will be an approximation of the discrete process in the joint large population, small time-steps and weak selection limit. If the fitness functions are sufficiently regular, we can recast the weak formulation in a more standard formulation, without any boundary conditions, but supplemented by a number of conservation laws. The equations in this family can be purely diffusive, purely hyperbolic or of convection–diffusion type, with frequency dependent convection. The particular outcome will depend on the assumed scalings. The diffusive equations are of the degenerate type; using a duality approach, we also obtain a frequency dependent version of the Kimura equation without any further assumptions. We also show that the convective approximation is related to the replicator dynamics and provide some estimate of how accurate is the convective approximation, with respect to the convective-diffusion approximation. In particular, we show that the mode, but not the expected value, of the probability distribution is modelled by the replicator dynamics. Some numerical simulations that illustrate the results are also presented.  相似文献   

14.
We study fixation probabilities and times as a consequence of neutral genetic drift in subdivided populations, motivated by a model of the cultural evolutionary process of language change that is described by the same mathematics as the biological process. We focus on the growth of fixation times with the number of subpopulations, and variation of fixation probabilities and times with initial distributions of mutants. A general formula for the fixation probability for arbitrary initial condition is derived by extending a duality relation between forwards- and backwards-time properties of the model from a panmictic to a subdivided population. From this we obtain new formulae(formally exact in the limit of extremely weak migration) for the mean fixation time from an arbitrary initial condition for Wright's island model, presenting two cases as examples. For more general models of population subdivision, formulae are introduced for an arbitrary number of mutants that are randomly located, and a single mutant whose position is known. These formulae contain parameters that typically have to be obtained numerically, a procedure we follow for two contrasting clustered models. These data suggest that variation of fixation time with the initial condition is slight, but depends strongly on the nature of subdivision. In particular, we demonstrate conditions under which the fixation time remains finite even in the limit of an infinite number of demes. In many cases-except this last where fixation in a finite time is seen--the time to fixation is shown to be in precise agreement with predictions from formulae for the asymptotic effective population size.  相似文献   

15.
N. Takahata 《Genetics》1991,129(2):585-595
In a geographically structured population, the interplay among gene migration, genetic drift and natural selection raises intriguing evolutionary problems, but the rigorous mathematical treatment is often very difficult. Therefore several approximate formulas were developed concerning the coalescence process of neutral genes and the fixation process of selected mutations in an island model, and their accuracy was examined by computer simulation. When migration is limited, the coalescence (or divergence) time for sampled neutral genes can be described by the convolution of exponential functions, as in a panmictic population, but it is determined mainly by migration rate and the number of demes from which the sample is taken. This time can be much longer than that in a panmictic population with the same number of breeding individuals. For a selected mutation, the spreading over the entire population was formulated as a birth and death process, in which the fixation probability within a deme plays a key role. With limited amounts of migration, even advantageous mutations take a large number of generations to spread. Furthermore, it is likely that these mutations which are temporarily fixed in some demes may be swamped out again by non-mutant immigrants from other demes unless selection is strong enough. These results are potentially useful for testing quantitatively various hypotheses that have been proposed for the origin of modern human populations.  相似文献   

16.
The ancestral selection graph in population genetics was introduced by Krone and Neuhauser [Krone, S.M., Neuhauser, C., 1997. Ancestral process with selection. Theor. Popul. Biol. 51, 210–237] as an analogue of the coalescent genealogy of a sample of genes from a neutrally evolving population. The number of particles in this graph, followed backwards in time, is a birth and death process with quadratic death and linear birth rates. In this paper an explicit form of the probability distribution of the number of particles is obtained by using the density of the allele frequency in the corresponding diffusion model obtained by Kimura [Kimura, M., 1955. Stochastic process and distribution of gene frequencies under natural selection. Cold Spring Harbor Symposia on Quantitative Biology 20, 33–53]. It is shown that the process of fixation of the allele in the diffusion model corresponds to convergence of the ancestral process to its stationary measure. The time to fixation of the allele conditional on fixation is studied in terms of the ancestral process.  相似文献   

17.
Relationship between DNA Polymorphism and Fixation Time   总被引:5,自引:3,他引:2       下载免费PDF全文
F. Tajima 《Genetics》1990,125(2):447-454
When there is no recombination among nucleotide sites in DNA sequences, DNA polymorphism and fixation of mutants at nucleotide sites are mutually related. Using the method of gene genealogy, the relationship between the DNA polymorphism and the fixation of mutant nucleotide was quantitatively investigated under the assumption that mutants are selectively neutral, that there is no recombination among nucleotide sites, and that the population is a random mating population with N diploid individuals. The results obtained indicate that the expected number of nucleotide differences between two DNA sequences randomly sampled from the population is 42% less when a mutant at a particular nucleotide site reaches fixation than at a random time, and that heterozygosity is also expected to be less when fixation takes place than at a random time, but the amount of reduction depends on the value of 4Nv in this case, where v is the mutation rate per DNA sequence per generation. The formula for obtaining the expected number of nucleotide differences between the two DNA sequences for a given fixation time is also derived, and indicates that, even when it takes a large number of generations for a mutant to reach fixation, this number is 33% less than at a random time. The computer simulation conducted suggests that the expected number of nucleotide differences between the two DNA sequences at the time when an advantageous mutant becomes fixed is essentially the same as that of neutral mutant if the fixation time is the same. The effect of recombination on the amount of DNA polymorphism was also investigated by using computer simulation.  相似文献   

18.
James F. Crow 《Genetics》2010,184(3):609-611
Sewall Wright and R. A. Fisher often differed, including on the meaning of inbreeding and random gene frequency drift. Fisher regarded them as quite distinct processes, whereas Wright thought that because his inbreeding coefficient measured both they should be regarded as the same. Since the effective population numbers for inbreeding and random drift are different, this would argue for the Fisher view.SEWALL Wright and R. A. Fisher were central figures in mathematical population genetics; along with J. B. S. Haldane they effectively invented the field and dominated it for many years. On most issues the three were in agreement. In particular, all favored a neo-Darwinian gradualist approach and believed in the importance of a mathematical theory for understanding the evolutionary process. Yet on a few questions Fisher and Wright differed profoundly and argued vehemently. Fisher was contentious and was often involved in controversy, frequently attacking his opponents mercilessly. Wright, in contrast, was very gentle to most people. But there were a few exceptions and Fisher was one. Haldane mostly stayed out of the arguments between them.One question on which the two disagreed was the importance of random gene frequency drift and its role in Wright''s shifting-balance theory of evolution. Wright thought that a structured population with many partially isolated subpopulations, within which there was random drift and among which there was an appropriate amount of migration, offered the greatest chance for evolutionary novelty and could greatly increase the speed of evolution. Fisher thought that a large panmictic population offered the best chance for advantageous genes and gene combinations to spread through the population, unimpeded by random processes. They also disagreed on dominance, Fisher believing that it evolved by selection of dominance modifiers and Wright that it was a consequence of the nature of gene action. These differences were widely argued by population geneticists in the middle third of the twentieth century, and the interested community divided into two camps. Although the issues are not settled, Wright''s shifting-balance theory has less support than it formerly had. As for dominance, there is general quantitative disagreement with Fisher''s explanation of modifiers, but other mechanisms (e.g., selection for more active alleles) have to some extent replaced it. Wright''s theory remains popular and has been generalized and extended (Kacser and Burns 1973).  相似文献   

19.
Species simultaneously compete with and facilitate one another. Size can mediate transitions along this competition–facilitation continuum, but the consequences for demography are unclear. We orthogonally manipulated the size of a focal species, and the size and density of a heterospecific neighbour, in the field using a model marine system. We then parameterised a size‐structured population model with our experimental data. We found that heterospecific size and density interactively altered the population dynamics of the focal species. Size determined whether heterospecifics facilitated (when small) or competed with (when large) the focal species, while density strengthened these interactions. Such size‐mediated interactions also altered the pace of the focal’s life history. We provide the first demonstration that size and density mediate competition and facilitation from a population dynamical perspective. We suspect such effects are ubiquitous, but currently underappreciated. We reiterate classic cautions against inferences about competitive hierarchies made in the absence of size‐specific data.  相似文献   

20.
Journal of Mathematical Biology - Two major forces shaping evolution are drift and selection. The standard models of neutral drift—the Wright–Fisher (WF) and Moran processes—can...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号