首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immobilized Candida antarctica lipase B catalyzed the synthesis of triglycerides from glycerol and phenylalkanoic acids in a solvent-free system. 4-Phenylbutyric acid was the best acyl donor and displayed the highest synthetic rate of triphenylbutyrin (glyceryl triphenylbutyrate) at 65 degrees C among various phenylalkanoic acids with straight alkyl chains. The external mass transfer between the immobilized lipase and the bulk reaction mixture was limited. Different methods of removing water during the lipase-catalyzed esterification including spontaneous evaporation, the use of saturated salts solutions, and the use of molecular sieves were studied. The highest yield of triphenylbutyrin at 65 degrees C was 98%, by the elimination of water using molecular sieves in a solvent-free system. The glycerol was almost completely esterified to triphenylbutyrin in excess phenylbutyric acid with various substrate molar ratios.  相似文献   

2.
Abstract

This study evaluated coupled effects of molar ratio of substrates and enzyme loading in a solvent-free system using a simple mathematical approach to obtain high conversions on octyl caprylate synthesis with Novozym 435. When molar ratios of caprylic acid to n-octanol (1:1 and 1:3) were evaluated with enzyme loadings of 1% to 4% (wt/wt acid), an interdependence between the masses of reagents and the enzymes was observed, that was expressed as a mathematical relation. The study of this relation, named as SER, indicated a specific range of reaction conditions that resulted in conversions above 90%. The most suitable condition corresponded to an acid:alcohol molar ratio of 1:1.3 and an enzyme loading of 1.5%, resulting in 94.5% of conversion at 65?°C in 3?hours of reaction. A different reaction system (bottle reactor) was used to evaluate the influence of reagents mixture and heat distribution. The use of a bottle reactor allowed yield improvement that reached 99.3%. At this condition, Novozym 435 was reused, without washing steps, in three subsequent batches keeping high conversion. A possible balance between the shift of chemical equilibrium by stoichiometric excess of reagents and enzymatic inhibition effects by substrates can be expressed mathematically in a convenient way, helping to predict the behaviour of synthesis in different conditions. The mathematical relation proposed, SER, allowed the achievement of 99% of conversion on enzymatic synthesis of octyl caprylate.  相似文献   

3.
In this work, the transesterification reaction of isoamyl alcohol obtained from fusel oil and leading to the synthesis of isoamyl acetate was conducted simultaneously with in situ ethanol removal, which allows to shift the reaction equilibrium toward ester synthesis. The extracellular Aspergillus oryzae lipase was immobilized into calcium alginate. Effects of immobilization conditions on the loading efficiency and on the specific activity of entrapped lipase were investigated. The kinetic transfer of volatile reactants from the reactor was investigated using an experimentally first order kinetic model, in order to approve the feasibility of the liquid-gas system with continuous ethanol removal in the ester synthesis. The effects of the most influent parameters affecting the reaction have been also investigated using a Doehlert matrix design. The better operating conditions for isoamyl acetate synthesis were: a temperature of 68.5°C and a respective isoamyl alcohol and A. oryzae lipase concentration of 0.72 M and 2.39 g/L. At these conditions, the resulting reaction conversion and ethanol extraction yields were of 89.55 and 69.60%, respectively. The use of the fluidized bed reactor with continuous ethanol removal has allowed to improve the reaction conversion which was two times than the conversion higher obtained in batch reactor. Furthermore, under the optimized conditions in the fluidized bed reactor, the reaction conversion and the ethanol extraction yields were increased by 44.8 and 36.2%, respectively.  相似文献   

4.
Immobilized Candida antarctica lipase-catalyzed esterification of adipic acid and oleyl alcohol was investigated in a solvent-free system (SFS). Optimum conditions for adipate ester synthesis in a stirred-tank reactor were determined by the response surface methodology (RSM) approach with respect to important reaction parameters including time, temperature, agitation speed, and amount of enzyme. A high conversion yield was achieved using low enzyme amounts of 2.5% w/w at 60°C, reaction time of 438 min, and agitation speed of 500 rpm. The good correlation between predicted value (96.0%) and actual value (95.5%) implies that the model derived from RSM allows better understanding of the effect of important reaction parameters on the lipase-catalyzed synthesis of adipate ester in an organic solvent-free system. Higher volumetric productivity compared to a solvent-based system was also offered by SFS. The results demonstrate that the solvent-free system is efficient for enzymatic synthesis of adipate ester.  相似文献   

5.
This study focused on the application of vacuum system to synthesize capsiate analogs. The capsiate analogs containing conjugated linoleic acid (CLA) was successfully synthesized in solvent free system via lipase-catalyzed esterification. This esterification was carried out using vanillyl alcohol and CLA as substrates, and Lipozyme RM IM from Rhizomucor miehei as a biocatalyst. The best reaction condition was a molar ratio of 1:2 (vanillyl alcohol to CLA), a reaction temperature of 50 °C, and a lipase loading of 10% (w/w, based on total substrates). Application of vacuum increased the yield of capsiate analog as well as the reaction rate. When the vacuum levels were between 66.7 kPa and 1.3 kPa, an equilibrium yield of 100 mol% was achieved. The maximum yield was approached after only 3 h of reaction at the vacuum levels of higher than 13.3 kPa. The content of 9c,11t-CLA in capsiate analog synthesized was higher than that of 10t,12c-CLA.  相似文献   

6.
A solvent-free biocatalytic process for the synthesis of high quality cetyl laurate, myristate, palmitate and stearate has been optimized. This enzymatic procedure follows the fundamental principles of the Green Chemistry and lead to sustainable products, which can be labeled as natural and conform to the principal requirements for its use in high value-added goods. The four esters selected are the main components of spermaceti, a mixture of waxes very appreciated in cosmetic and pharmacy because of its physical properties and emolliency, which was formerly extracted from the head of the sperm whales. In this paper, the influence of the amount of biocatalyst, the commercially available Novozym® 435, and the temperature were studied in an open-air batch reactor before carrying out the synthesis in a high performance vacuum reactor with dry nitrogen input to shift the equilibrium towards product formation. Under optimal conditions, conversion was higher than 98.5 %. The characterization of the enzymatic cetyl esters puts in evidence that these are ultra-pure compounds, which have similar properties to the ones obtained through the conventional industrial processes with the extra benefit of being environmentally friendly.  相似文献   

7.
The total synthesis of a potent antiplasmodial natural bichalcone, rhuschalcone VI, is described starting from simple and available resorcinol and 4-hydroxybenzaldehyde. Key steps include the solvent-free Aldol syntheses of chalcones, and the successful application of the Suzuki–Miyaura coupling reaction in the synthesis of bichalcones. The present work constitutes a general method for the rapid syntheses of a number of bichalcones related to rhuschalcone VI. Some of the bichalcones showed moderate antiprotozoal activities against Bodo caudatus, a preliminary screening system for antitrypanosomal activities, most of them with little or no cytotoxicity.  相似文献   

8.
The enzymatic method for synthesising polyglycerol polyricinoleate (PGPR), a food additive named E-476, was successfully carried out in the presence of immobilised Rhizopus oryzae lipase in a solvent-free medium. The great advantage of using the commercial preparation of R. oryzae lipase is that it is ten times cheaper than the commercial preparation of R. arrhizus lipase, the biocatalyst used in previous studies. The reaction, which is really a reversal of hydrolysis, takes place in the presence of a very limited amount of aqueous phase. Immobilisation of the lipase by physical adsorption onto an anion exchange resin provided good results in terms of activity, enzyme stability and reuse of the immobilised derivative. It has been established that the adsorption of R. oryzae lipase on Lewatit MonoPlus MP 64 follows a pseudo-second order kinetics, which means that immobilisation is a process of chemisorption, while the equilibrium adsorption follows a Langmuir isotherm. The use of this immobilised derivative as catalyst for obtaining PGPR under a controlled atmosphere in a vacuum reactor, with a dry nitrogen flow intake, allowed the synthesis of a product with an acid value lower than 6 mg KOH/g, which complies with the value established by the European Commission Directive. This product also fulfils the European specifications regarding the hydroxyl value and refractive index given for this food additive, one of whose benefits, as proved in our experiments, is that it causes a drastic decrease in the viscosity (by 50 %) and yield stress (by 82 %) of chocolate, comparable to the impact of customary synthesised PGPR.  相似文献   

9.
The ethanologenic bacterium Zymomonas mobilis ZM4 is of special interest because it has a high ethanol yield. This is made possible by the two alcohol dehydrogenases (ADHs) present in Z. mobilis ZM4 (zmADHs), which shift the equilibrium of the reaction toward the synthesis of ethanol. They are metal-dependent enzymes: zinc for zmADH1 and iron for zmADH2. However, zmADH2 is inactivated by oxygen, thus implicating zmADH2 as the component of the cytosolic respiratory system in Z. mobilis. Here, we show crystal structures of zmADH2 in the form of an apo-enzyme and an NAD+-cofactor complex. The overall folding of the monomeric structure is very similar to those of other functionally related ADHs with structural variations around the probable substrate and NAD+ cofactor binding region. A dimeric structure is formed by the limited interactions between the two subunits with the bound NAD+ at the cleft formed along the domain interface. The catalytic iron ion binds near to the nicotinamide ring of NAD+, which is likely to restrict and locate the ethanol to the active site together with the oxidized Cys residue and several nonpolar bulky residues. The structures of the zmADH2 from the proficient ethanologenic bacterium Z. mobilis, with and without NAD+ cofactor, and modeling ethanol in the active site imply that there is a typical metal-dependent catalytic mechanism.  相似文献   

10.
An alpha-hydroxy acid derivative, alpha-butylglucoside lactate, was successfully prepared by enzymatic transesterification of alpha-butylglucoside with a lactate alkyl ester in a non-aqueous medium using immobilized lipase as biocatalyst. Ester synthesis in organic solvent was optimized. Solvent choice was made on the basis of substrate solubility and enzyme stability in the medium. A solvent-free reaction using butyllactate as lactate donor led to the highest yields. In the presence of 0.5M alphabutylglucoside and 100 g/L Novozym(R), a 67 % yield could be obtained within 40 h at 50 degrees C. However, the presence of butanol by-product limited the reaction to a maximum that could not be exceeded in closed systems. The elimination of the alcohol under reduced pressure resulted in the complete equilibrium shift of the transesterification reaction in favor of synthesis; below 15 mbars, more than 95% of 0.5M alpha-butylglucoside could be converted within 30 h. Moreover, simultaneous evaporation of water allowed hydrolysis of butyllactate to be eliminated. Consequently, a very high alpha-butylglucoside lactate concentration (170 g/) could be obtained in a single batch reaction. A single purification procedure, consisting of butyllactate extraction with hexane, enabled the product to be obtained at a purity above 95% (w/w). 1H and 13C NMR analysis later demonstrated that lactic acid was exclusively grafted onto the primary hydroxyl group of alphabutylglucoside.  相似文献   

11.
Acetate-1-14C was added to anaerobic glucose-fermenting cultures of Escherichia coli and Aerobacter cloacae. In the E. coli culture, lactate formation occurred late in the fermentation, when the rate of production of formate and acetate had decreased. The occurrence of acetate label in the lactate indicated formation of pyruvate from acetyl-coenzyme A (CoA) and formate. In the A. cloacae cultures, substantial amounts of acetate label were found in the 2,3-butanediol formed. Evidence is presented that the label could have entered the diol only by conversion of formate and acetyl-CoA into pyruvate. The observed levels of radioactivity in the diol indicated that during diol formation the reaction yielding formate and acetyl-CoA from pyruvate CoA was operating close to equilibrium. The shift in metabolism from formation of acetate, ethyl alcohol, and formate to the formation of butanediol or lactate appears to be due basically to an approach to equilibrium of the pyruvate-splitting reaction, whatever the induction mechanism by which the shift is implemented.  相似文献   

12.
Real-time conversion estimation through macroscopic balancing was investigated for enzymatic esterification reactions in a solvent-free system. In principle, the conversion of ester synthesis can be determined from the amount of water produced by the reaction because water is formed as a by-product in the same molar ratio as the product. In this study, we show that the water production rate, and thereby the reaction conversion, can be estimated on-line from measurements of the relative humidity of the inlet and outlet air and the material balances of water in the system. In order to test the performance of the real-time conversion estimation method, the lipase-catalyzed esterification reaction of n-capric acid and n-decyl alcohol in solvent-free media was conducted while controlling the water activity at various values. When the reaction conversions estimated on-line were compared with those analyzed off-line by gas chromatography, good agreement was obtained: the average mean absolute error was +/- 2.4% of the reaction conversion despite the simplicity of the method. The on-line estimation method presented here requires no expensive or complicated analytical instruments and no sampling of reaction medium. It can be used for monitoring nonaqueous enzymatic reactions where water is produced or consumed during reaction.  相似文献   

13.
A new approach to preparative organic synthesis in aqueous–organic systems is suggested. It is based on the idea that the enzymatic process is carried out in a biphasic system “water–water-immiscible organic solvent.” Thereby the enzyme is localized in the aqueous phase—this eliminates the traditional problem of stabilizing the enzyme against inactivation by a nonaqueous solvent. Hence, in contrast to the commonly used combinations “water–water-miscible organic solvent,” in the suggested system the content of water may be infinitely low. This allows one to dramatically shift the equilibrium of the reactions forming water as a reaction product (synthesis of esters and amides, polymerization of amino acids, sugars and nucleotides, dehydration reactions, etc.) toward the products. The fact that the system consists of two phases provides another very important source for an equilibrium shift, i.e., free energies of the transfer of a reagent from one phase to the other. Equations are derived describing the dependence of the equilibrium constant in a biphasic system on the ratio of the volumes of the aqueous and nonaqueous phases and the partition coefficients of the reagents between the phases. The approach has been experimentally verified with the synthesis of N-acetyl-L -tryptophan ethyl ester from the respective alcohol and acid. Porous glass was impregnated with aqueous buffer solution of chymotrypsin and suspended in chloroform containing N-acetyl-L -tryptophan and ethanol. In water (no organic phase) the yield of the ester is about 0.01%, whereas in this biphasic system it is practically 100%. The idea is applicable to a great number of preparative enzymatic reactions.  相似文献   

14.
Alkyl beta-D-glucosides were synthesized from D-glucose and alcohols by reverse hydrolysis using the commercially available almond beta-D-glucosidase in 9:1 (v/v) acetonitrile-water medium. The main characteristics of this enzyme-catalyzed glucosylation were established by using 2-hydroxybenzyl alcohol. The reaction is entirely regio- and stereoselective. The solvent plays a fundamental role because, by decreasing the water concentration in the medium, the shift of the reaction equilibrium toward synthesis is realized without using an excessive amount of alcohol. Nevertheless, a minimum amount of water is necessary to maintain the enzyme activity. In contrast to the use of the enzyme in aqueous medium, the pH of the added water in acetonitrile did not influence the synthesis. Using this procedure, we have conducted systematic glucosylation of numerous alcohols and we have investigated enzyme specificity and alcohol reactivity. The enzyme has a pronounced affinity for the alcohols containing a phenyl group, and enantioselectivity for the aglycon is obtained with 1-phenylethyl alcohol. Moreover, by using almond beta-D-glucosidase it was also possible to synthesize alkyl beta-D-galactosides. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
This work aims to establish microscale methods to rapidly explore bioprocess options that might be used to enhance bioconversion reaction yields: either by shifting unfavourable reaction equilibria or by overcoming substrate and/or product inhibition. As a typical and industrially relevant example of the problems faced we have examined the asymmetric synthesis of (2S,3R)-2-amino-1,3,4-butanetriol from l-erythrulose using the ω-transaminase from Chromobacterium violaceum DSM30191 (CV2025 ω-TAm) and methylbenzylamine as the amino donor. The first process option involves the use of alternative amino donors. The second couples the CV2025 ω-TAm with alcohol dehydrogenase and glucose dehydrogenase for removal of the acetophenone (AP) by-product by in situ conversion to (R)-1-phenylethanol. The final approaches involve physical in-situ product removal methods. Reduced pressure conditions, attained using a 96-well vacuum manifold were used to selectively increase evaporation of the volatile AP while polymeric resins were also utilised for selective adsorption of AP from the bioconversion medium. For the particular reaction studied here the most promising bioprocess options were use of an alternative amino donor, such as isopropylamine, which enabled a 2.8-fold increase in reaction yield, or use of a second enzyme system which achieved a 3.3-fold increase in yield.  相似文献   

16.
Candida antarctica Lipase B was successfully immobilized on magnetite (Fe3O4) nanoparticles functionalized with chitosan and glutaraldehyde. The obtained magnetic catalyst was characterized and its performance was evaluated in solvent-free synthesis of ethyl oleate at room temperature. The performance of this biocatalyst was compared with the commercial Novozym 435, as a tool to estimate the efficiency of immobilization. It was found that using 33 mg of the biocatalyst it was possible to reach almost the same activity that was obtained using 12 mg of Novozym 435. Furthermore, this new biocatalyst presents the advantages of not being degraded by short alcohols, being easily recovered from the reaction media by magnetic decantation, and low fabrication cost. The possibility of reutilization was also studied, keeping a significant activity up to eight cycles. A special sampling protocol was also developed for the multiphasic reaction system, to assure accurate results. This novel biocatalyst is an interesting alternative for potential industrial applications, considering the above-mentioned advantages.  相似文献   

17.
Esterification of oleic acid with n-butanol in the presence of Lipozyme(R) was carried out at 25 degrees C in isooctane with various initial water activities. Initial reaction rate as well as equilibrium conversion decreased at high initial water activity. Therefore, removal of water present in the reaction mixtures was essential. A pervaporation process was applied to the lipase-catalyzed synthesis of n-butyloleate to remove water. Pervaporation selectively separated water from the reaction mixture using a nonporous polymeric membrane, cellulose acetate. Therefore, pervaporation is potentially applicable to remove the water produced from various enzymatic processes, such as synthesis of various esters, peptides, and glycosides in a solvent system as well as in a solvent-free system. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
The chemo-selectivity and the efficiency of the enzymatic acylation of 6-amino-1-hexanol have been studied in organic solvents distinct by their nature and their dissociation power, in solvent-free systems corresponding to free fatty acid or ethyl ester media and in different ionic liquids. In organic solvents and fatty acid ester media, a sequential reaction allowed the major production of the diacylated derivative at the equilibrium state. Conversely, the use of a solvent-free system with free fatty acid orientated the reaction exclusively towards the O-acylation by modifying the ionization state of the amino group and decreased the reaction time to reach the equilibrium state. Ionic liquids as 1-butyl-3-methyl imidazolium cation coupled with anions of low nucleophilicity significantly improved the efficiency of the reaction (substrate conversion and initial rate) and also led to the N,O-diacyl product. The nature of the reaction medium was shown to influence the ionization state of functional groups, then their capacity to react, and finally, the efficiency of the reaction.  相似文献   

19.
Abstract

A cosmetic ester, cetyl oleate was synthesized using microwave irradiated system. The esterification reaction was carried using Candida antarctica lipase B in a solvent-free media. The influence of various reaction parameters was studied, and the efficiency of Fermase CALBTM10000 was compared with other enzymes. Equilibrium conversion of 97.5% was obtained within 20?min at 60?°C temperature, 1:2 oleic acid to cetyl alcohol molar ratio and 4% w/w dose of lipase. A comparative study showed that microwave irradiation is a much more efficient method than ultrasound irradiation and conventional heating. Fermase CALBTM10000 was reusable over 6 enzymatic cycles as its stability improved under microwave system. Physicochemical parameters of cetyl oleate were tested in order to analyze its suitability for further cosmetic use.  相似文献   

20.
The hydrolysis and synthesis of N-Acetyl-I-tyrosine-ethyl-ester catalyzed by α-chymotrypsin immobilized in polymeric supports (Sephadex), with positive or negative stationary charges has been studied. Charged matrices perturbed the equilibrium (at pH 9.0), so that no complete hydrolysis was observed in the bulk solution and ester could be synthetized from acid and alcohol. The change is due to dipole orientation energies in the electric double layer where the reactions are catalyzed. This represents a situation where the equilibrium in the system is kinetically controlled by the equilibrium in a sub-system (here the electric double layer).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号