首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic modifications and DNA methylation in particular, have been recognized as important mechanisms to alter gene expression in malignant cells. Here, we identified candidate genes which were upregulated after an epigenetic treatment of B-cell lymphoma cell lines (Burkitt''s lymphoma, BL; Follicular lymphoma, FL; Diffuse large B-cell lymphoma, DLBCL activated B-cell like, ABC; and germinal center like, GCB) and simultaneously expressed at low levels in samples from lymphoma patients. Qualitative methylation analysis of 24 candidate genes in cell lines revealed five methylated genes (BMP7, BMPER, CDH1, DUSP4 and LRP12), which were further subjected to quantitative methylation analysis in clinical samples from 59 lymphoma patients (BL, FL, DLBCL ABC and GCB; and primary mediastinal B-cell lymphoma, PMBL). The genes LRP12 and CDH1 showed the highest methylation frequencies (94% and 92%, respectively). BMPER (58%), DUSP4 (32%) and BMP7 (22%), were also frequently methylated in patient samples. Importantly, all gene promoters were unmethylated in various control samples (CD19+ peripheral blood B cells, peripheral blood mononuclear cells and tonsils) as well as in follicular hyperplasia samples, underscoring a high specificity. The combination of LRP12 and CDH1 methylation could successfully discriminate between the vast majority of the lymphoma and control samples, emphasized by receiver operating characteristic analysis with a c-statistic of 0.999. These two genes represent promising epigenetic markers which may be suitable for monitoring of B-cell lymphoma.  相似文献   

2.
Aberrant expression of CUL4B was identified in various types of solid cancers. Cumulative evidences support the oncogenic role of CUL4B in cancers, including regulation of cell proliferation and signal transduction. However, its clinical value and potential pathogenic mechanism in diffuse large B-cell lymphoma (DLBCL) have not been described previously. Therefore, we hypothesize that overexpressed CUL4B may contribute to the pathogenesis of DLBCL. The aim of this study is to assess the expression and the biological function of CUL4B in DLBCL progression. In our study, CUL4B overexpression was observed in DLBCL tissues, and its upregulation was closely associated with poor prognosis in patients. Furthermore, the functional roles of CUL4B was detected both in vitro and in vivo. We demonstrated that silencing CUL4B could not only induce cell proliferation inhibition, cell cycle arrest, and motility attenuation of DLBCL cells in vitro, but also decrease tumor growth in DLBCL xenografts mice. In addition, we identi?ed that CUL4B may act as a potent inductor of JNK phosphorylation in regulation of autophagy. Our findings demonstrated a significant role of CUL4B in the development and progression of DLBCL. CUL4B may act as a useful biomarker and a novel therapeutic target in DLBCL.  相似文献   

3.
4.
Cancer initiation and progression have been associated with dysregulated long non-coding RNA (lncRNA) expression. However, the lncRNA expression profile in aggressive B-cell non-Hodgkin lymphoma (NHL) has not been comprehensively characterized. This systematic review aims to evaluate the role of lncRNAs as a biomarker to investigate their future potential in the diagnosis, real-time measurement of response to therapy and prognosis in aggressive B-cell NHL. We searched PubMed, Web of Science, Embase and Scopus databases using the keywords “long non-coding RNA”, “Diffuse large B-cell lymphoma”, “Burkitt's lymphoma” and “Mantle cell lymphoma”. We included studies on human subjects that measured the level of lncRNAs in samples from patients with aggressive B-cell NHL. We screened 608 papers, and 51 papers were included. The most studied aggressive B-cell NHL was diffuse large B-cell lymphoma (DLBCL). At least 79 lncRNAs were involved in the pathogenesis of aggressive B-cell NHL. Targeting lncRNAs could affect cell proliferation, viability, apoptosis, migration and invasion in aggressive B-cell NHL cell lines. Dysregulation of lncRNAs had prognostic (e.g. overall survival) and diagnostic values in patients with DLBCL, Burkitt's lymphoma (BL), or mantle cell lymphoma (MCL). Furthermore, dysregulation of lncRNAs was associated with response to treatments, such as CHOP-like chemotherapy regimens, in these patients. LncRNAs could be promising biomarkers for the diagnosis, prognosis and response to therapy in patients with aggressive B-cell NHL. Additionally, lncRNAs could be potential therapeutic targets for patients with aggressive B-cell NHL like DLBCL, MCL or BL.  相似文献   

5.
Epstein–Barr virus-positive diffuse large B-cell lymphoma (EBV+DLBCL) is an aggressive malignancy that is largely resistant to current therapeutic regimens, and is an attractive target for immune-based therapies. Anti-programmed death-1 (PD-1) antibodies showed encouraging anti-tumor effects in both preclinical models and advanced solid and hematological malignancies, but its efficacy against EBV+DLBCL is unknown. Herein, we performed experiments using co-culture system with T cells and lymphoma cell lines including EBV+DLBCL and EBV-DLBCL [including germinal center B-cell like (GCB)-DLBCL and non-GCB-DLBCL] in vitro. We show that lymphoma cells augmented the expression of PD-1 on T cells, decreased the proliferation of T cells, and altered the secretion of multiple cytokines. However, through PD-1 blockade, these functions could be largely restored. Notbaly, the effect of PD-1 blockade on antitumor immunity was more effective in EBV+DLBCL than that in EBV-DLBCL in vitro. These results suggest that T-cell exhaustion and immune escape in microenvironment is one of the mechanisms underlying DLBCL; and PD-1 blockade could present as a efficacious immunotherapeutic treatment for EBV+DLBCL.  相似文献   

6.
Over half of patients with diffuse large B-cell lymphoma (DLBCL) can be cured by standard R-CHOP treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). However, the remaining patients are refractory and ultimately succumb to progressive or relapsed disease. During the past decade, there has been significant progress in the understanding of molecular mechanisms in DLBCL, largely owing to collaborative efforts in large-scale gene expression profiling and deep sequencing, which have identified genetic alterations critical in lymphomagenesis through activation of key signaling transduction pathways in DLBCL. These discoveries have not only led to the development of targeted therapies, including several currently in clinical trials, but also laid a solid foundation for the future identification of more effective therapies for patients not curable by R-CHOP. This review summarizes the recent advances in our understanding of the molecular characterization and pathogenesis of DLBCL and new treatment directions.  相似文献   

7.
8.
ONC201, founding member of the imipridone class of small molecules, is currently being evaluated in advancer cancer clinical trials. We explored single agent and combinatorial efficacy of ONC201 in preclinical models of hematological malignancies. ONC201 demonstrated (GI50 1–8 µM) dose- and time-dependent efficacy in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt's lymphoma, anaplastic large cell lymphoma (ALCL), cutaneous T-cell lymphoma (CTCL), Hodgkin's lymphoma (nodular sclerosis) and multiple myeloma (MM) cell lines including cells resistant to standard of care (dexamethasone in MM) and primary samples. ONC201 induced caspase-dependent apoptosis that involved activation of the integrated stress response (ATF4/CHOP) pathway, inhibition of Akt phosphorylation, Foxo3a activation, downregulation of cyclin D1, IAP and Bcl-2 family members. ONC201 synergistically reduced cell viability in combination with cytarabine and 5-azacytidine in AML cells. ONC201 combined with cytarabine in a Burkitt's lymphoma xenograft model induced tumor growth inhibition that was superior to either agent alone. ONC201 synergistically combined with bortezomib in MM, MCL and ALCL cells and with ixazomib or dexamethasone in MM cells. ONC201 combined with bortezomib in a Burkitt's lymphoma xenograft model reduced tumor cell density and improved CHOP induction compared to either agent alone. These results serve as a rationale for ONC201 single-agent trials in relapsed/refractory acute leukemia, non-Hodgkin's lymphoma, MM and combination trial with dexamethasone in MM, provide pharmacodynamic biomarkers and identify further synergistic combinatorial regimens that can be explored in the clinic.  相似文献   

9.
Glycoprotein prostaglandin D2 synthase (PTGDS) is a member of the lipocalin superfamily and plays dual roles in prostaglandins metabolism and lipid transport. PTGDS has been involved in various cellular processes including the tumorigenesis of solid tumors, yet its role in carcinogenesis is contradictory and the significance of PTGDS in hematological malignancies is ill-defined. Here, we aimed to explore the expression and function of PTGDS in diffuse large B-cell lymphoma (DLBCL), especially the potential role of PTGDS inhibitor, AT56, in lymphoma therapy. Remarkable high expression of PTGDS was found in DLBCL, which was significantly correlated with poor prognosis. PTGDS overexpression and rhPTGDS were found to promote cell proliferation. Besides, in vitro and in vivo studies indicated that PTGDS knockdown and AT56 treatment exerted an anti-tumor effect by regulating cell viability, proliferation, apoptosis, cell cycle, and invasion, and enhanced the drug sensitivity to adriamycin and bendamustine through promoting DNA damage. Moreover, the co-immunoprecipitation-based mass spectrum identified the interaction between PTGDS and MYH9, which was found to promote DLBCL progression. PTGDS inhibition led to reduced expression of MYH9, and then declined activation of the Wnt-β-catenin-STAT3 pathway through influencing the ubiquitination and degradation of GSK3-β in DLBCL. The rescue experiment demonstrated that PTGDS exerted an oncogenic role through regulating MYH9 and then the Wnt-β-catenin-STAT3 pathway. Based on point mutation of glycosylation sites, we confirmed the N-glycosylation of PTGDS in Asn51 and Asn78 and found that abnormal glycosylation of PTGDS resulted in its nuclear translocation, prolonged half-life, and enhanced cell proliferation. Collectively, our findings identified for the first time that glycoprotein PTGDS promoted tumorigenesis of DLBCL through MYH9-mediated regulation of Wnt-β-catenin-STAT3 signaling, and highlighted the potential role of AT56 as a novel therapeutic strategy for DLBCL treatment.Subject terms: Oncogenes, Ubiquitylation, Epigenetics, Protein-protein interaction networks, Prognostic markers  相似文献   

10.
Gastric cancer (GC) is frequently characterized by resistance to standard chemotherapeutic regimens and poor clinical outcomes. We aimed to identify a novel therapeutic approach using drug sensitivity testing (DST) and our computational SynerySeq pipeline. DST of GC cell lines was performed with a library of 215 Federal Drug Administration (FDA) approved compounds and identified clofarabine as a potential therapeutic agent. RNA-sequencing (RNAseq) of clofarabine treated GC cells was analyzed according to our SynergySeq pipeline and identified pictilisib as a potential synergistic agent. Clonogenic survival and Annexin V assays demonstrated increased cell death with clofarabine and pictilisib combination treatment (P<0.01). The combination induced double strand breaks (DSB) as indicated by phosphorylated H2A histone family member X (γH2AX) immunofluorescence and western blot analysis (P<0.01). Pictilisib treatment inhibited the protein kinase B (AKT) cell survival pathway and promoted a pro-apoptotic phenotype as evidenced by quantitative real time polymerase chain reaction (qRT-PCR) analysis of the B-cell lymphoma 2 (BCL2) protein family members (P<0.01). Patient derived xenograft (PDX) data confirmed that the combination is more effective in abrogating tumor growth with prolonged survival than single-agent treatment (P<0.01). The novel combination of clofarabine and pictilisib in GC promotes DNA damage and inhibits key cell survival pathways to induce cell death beyond single-agent treatment.  相似文献   

11.
12.
Although disputed by some, increasing evidence suggests that TNF-α synergies with traditional chemotherapeutic drugs to exert a heightened antitumor effect. The present study investigated the antitumor efficacy of recombinant IL-15 in combination with the STAT3 inhibitor cucurbitacin-I in a doxorubicin-resistant murine lymphoma model. The significance of the work is to understand and design effective strategies in doxorubicin resistant lymphomas. TNF-α is downregulated in dendritic cells from mice with Dalton's lymphoma and shows an inverse relationship with disease progression. Doxorubicin-resistant DL cells have elevated levels of Bcl-2 and Mcl-1 and increased phosphorylation of STAT3. These cells are refractory to dendritic cell derived TNF-α. Doxorubicin resistant Dalton's lymphoma is susceptible to dendritic cell derived TNF-α upon stimulation with the STAT3 inhibitor cucurbitacin-I, which downregulates STAT3 and other survival molecules. The combined treatment of low dose of cucurbitacin-I and rIL-15 is ineffective in mice with doxorubicin resistant Dalton's lymphoma, but a similar therapy prolongs the survival of mice transplanted with parental Dalton's lymphoma. Doxorubicin resistant Dalton's lymphoma responds to therapy with high doses of cucurbitacin-I and rIL-15. Dendritic cell derived from mice responded positively to the therapy and regained their tumoricidal properties with respect to growth inhibition and killing of DL tumor cells. Similar to DL, DC derived from CML patients are impaired in TNF-α expression and are unable to restrict the growth of drug-resistant lymphoma and leukemia cells. This combination approach could be used as a new therapeutic strategy for aggressive and highly metastatic doxorubicin resistant lymphoma.  相似文献   

13.
Lymphoma-specific biomarkers contribute to therapeutic strategies and the study of tumorigenesis. Diffuse large B-cell lymphoma (DLBCL) is the most common type of malignant lymphoma. However, only 50% of patients experience long-term survival after current treatment; therefore, developing novel therapeutic strategies is warranted. Comparative proteomic analysis of two DLBCL lines with a B-lymphoblastoid cell line (LCL) showed differential expression of Ran GTPase-activating protein 1 (RanGAP1) between them, which was confirmed using immunoblotting. Immunostaining showed that the majority of DLBCLs (92%, 46/50) were RanGAP1+, while reactive lymphoid hyperplasia (n = 12) was RanGAP1+ predominantly in germinal centers. RanGAP1 was also highly expressed in other B-cell lymphomas (BCL, n = 180) with brisk mitotic activity (B-lymphoblastic lymphoma/leukemia: 93%, and Burkitt lymphoma: 95%) or cell-cycle dysregulation (mantle cell lymphoma: 83%, and Hodgkin’s lymphoma 91%). Interestingly, serum RanGAP1 level was higher in patients with high-grade BCL (1.71 ± 2.28 ng/mL, n = 62) than in low-grade BCL (0.75 ± 2.12 ng/mL, n = 52) and healthy controls (0.55 ± 1.58 ng/mL, n = 75) (high-grade BCL vs. low-grade BCL, p = 0.002; high-grade BCL vs. control, p < 0.001, Mann-Whitney U test). In vitro, RNA interference of RanGAP1 showed no effect on LCL but enhanced DLBCL cell death (41% vs. 60%; p = 0.035) and cell-cycle arrest (G0/G1: 39% vs. 49%, G2/M: 19.0% vs. 7.5%; p = 0.030) along with decreased expression of TPX2 and Aurora kinases, the central regulators of mitotic cell division. Furthermore, ON 01910.Na (Estybon), a multikinase inhibitor induced cell death, mitotic cell arrest, and hyperphosphorylation of RanGAP1 in DLBCL cell lines but no effects in normal B and T cells. Therefore, RanGAP1 is a promising marker and therapeutic target for aggressive B-cell lymphoma, especially DLBCL.  相似文献   

14.
MY Fong  S Jin  M Rane  RK Singh  R Gupta  SS Kakar 《PloS one》2012,7(7):e42265
Application of doxorubicin (Dox) for the treatment of cancer is restricted due to its severe side effects. We used combination strategy by combining doxorubicin (Dox) with withaferin A (WFA) to minimize the ill effects of Dox. Treatment of various epithelial ovarian cancer cell lines (A2780, A2780/CP70 and CaOV3) with combination of WFA and Dox (WFA/DOX) showed a time- and dose-dependent synergistic effect on inhibition of cell proliferation and induction of cell death, thus reducing the dosage requirement of Dox. Combination treatment resulted in a significant enhancement of ROS production resulting in immense DNA damage, induction of autophagy analyzed by transmission electron microscope and increase in expression of autophagy marker LC3B, and culminated in cell death analyzed by cleaved caspase 3. We validated combination therapy on tumor growth using an in vitro 3Dimension (3D) tumor model and the more classic in vivo xenograft model of ovarian cancer. Both tumor models showed a 70 to 80% reduction in tumor growth compared to control or animals treated with WFA or Dox alone. Immunohistochemical analysis of the tumor tissues from animals treated with WFA/Dox combination showed a significant reduction in cell proliferation and formation of microvessels accompanied by increased in LC3B level, cleaved caspase 3, and DNA damage. Taken together, our data suggest that combining WFA with Dox decreases the dosage requirement of Dox, therefore, minimizing/eliminating the severe side effects associated with high doses of DOX, suggesting the application of this combination strategy for the treatment of ovarian and other cancers with no or minimum side effects.  相似文献   

15.
Several newly developed drugs including JQ1 (BET inhibitor), ABT199 (BCL2 inhibitor), and bortezomib (proteasome inhibitor) may offer novel therapeutic strategies for aggressive diffuse large B-cell lymphoma (DLBCL). We tested these drugs together with doxorubicin in a series of combinations in 16 DLBCL cell lines including 4 ABC-DLBCL (OCI-Ly3, OCI-Ly10, SUDHL2, RIVA) and 12 GCB-DLBCL lines (OCI-Ly4, OCI-Ly18, BJAB, SUDHL4, SUDHL6, SUDHL10, DB, PR1, VAL, SC1, Karpas-231, Karpas-422). Among these cell lines, ABT199 and doxorubicin, and to a lesser extent JQ1 and bortezomib, showed high variations in their ED50 values. Of the six cell lines showing high ABT199 ED50 values, four (SUDHL10, OCI-Ly4, SUDHL2, and BJAB) had no or little BCL2 expression, and SUDHL6 also displayed a low BCL2 expression. There was no association between the ED50 value of doxorubicin, JQ1 and bortezomib, and TP53/MYC/BCL2 genetic abnormalities or cell of origin subtype. A synergistic effect in all or the majority of drug combinations was seen in 11 cell lines, while an antagonistic effect in a high proportion of drug combinations was observed in the remaining 5 cell lines including the 3 (SUDHL10, OCI-Ly4, and SUDHL2) with little BCL2 expression, and additionally OCI-Ly18 and RIVA. Extensive Western blot analyses revealed high MCL1 expression in SUDHL10 and OCI-Ly4 but no apparent alterations in other cell lines. The molecular mechanism underlying the antagonistic effect of drug combinations in DLBCL is heterogeneous with the altered BCL2 family protein expression (absent BCL2, but high MCL1) in some cell lines.  相似文献   

16.
中枢神经系统(central nervous system,CNS)复发是弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)的一种不常见的严重的并发症,新诊断的患者2年内易于发生,最常见于非霍奇金淋巴瘤弥漫大B细胞型(non-Hodgkin diffuse large B-cell lymphoma-,NHL-DLBCL),目前,对于初始治疗后出现中枢复发其发病机制并不清楚。microRNA(miRNA)是一类新发现的非编码小分子RNA,通过抑制靶基因翻译或降解靶miRNA调控基因表达,参与细胞分化、增殖、调亡等生命活动。miRNA在淋巴瘤的发生发展中有重要作用。近年来大量研究已证实miRNA与肿瘤的组织来源、进展、转移预后与耐药都密切相关,既可作为抑癌基因,也可作为癌基因。淋巴瘤是一种血液免疫系统肿瘤,与淋巴瘤相关的miRNA已成为当前研究热点之一。microRNAs的功能紊乱如何导致DLBCL发生的机制目前还没有得到很好的证明,但DLBCL患者中464种miRNAs显示microRNA(包括miRNA-17-92簇)预测淋巴瘤的准确率达95%,为淋巴瘤研究提供了新依据。  相似文献   

17.
人类肿瘤生成过程由很多复杂环节组成,其主要现象表现为细胞分裂增殖的失调控生长。细胞分裂都必须按照正常细胞程序的每一个步骤进行才能保证机体的正常运转,细胞周期依赖分子PLK1是调节正常细胞有丝分裂、胞质分裂,以及对DNA受损伤后进行一系列反应调节的重要因子。它在细胞周期中的作用已有多位学者共同认识,当细胞失调控时检测到PLK1存在过量的表达,同时大量研究表明,人类PLK1基因不仅在多种已发现的恶性肿瘤中有此现象,而且在一些肿瘤中,它关系到这些肿瘤的发生发展及预后,被认为其可能成为一种新的肿瘤标志物,还可作为肿瘤定向分子靶向治疗中的一个有效目的基因的靶点,并且近年来对PLK1在肿瘤基因蛋白靶向治疗方面的药物研究开发已经成为学者研究的一个热点方向,该文对近年来PLK1在肿瘤生成中的作用,特别是其与妇科肿瘤关系方面的一些研究进展予以以下阐述。  相似文献   

18.
L Liu  CZ Zhang  M Cai  J Fu  GG Chen  J Yun 《PloS one》2012,7(7):e41293
Polo-like kinase 4 (PLK4), belonging to serine/threonine kinase family, is critical for centriole replication and cell cycle progression. PLK4 has been proposed as a tumor suppressor in hepatocellular carcinoma (HCC). However, its expression and significance in HCC have not been well studied. In the present study, we found that PLK4 was markedly downregulated in both HCC cell lines and fresh cancer tissues, using quantitative real-time-PCR and western blot. Immunohistochemistry data also revealed that decreased expression of PLK4 was present in 72.4% (178/246) of HCC tissues, compared with the corresponding adjacent nontumorous tissues. Furthermore, PLK4 expression significantly correlated with clinicopathological parameters, including clinical stage (P=0.034), serum α-fetoprotein (AFP) (P=0.019) and tumor size (P=0.032). Moreover, HCC patients with low PLK4 expression survived shorter than those with high PLK4 expression, as indicated by overall survival (P=0.002) and disease-free survival (P=0.012) assessed by the Kaplan-Meier method. In addition, multivariate analysis suggested PLK4 as an independent predictor of overall survival (HR, 0.556; 95%CI, 0.376-0.822; P=0.003) and disease-free survival (HR, 0.547; 95%CI, 0.382-0.783; P=0.001). Collectively, our study demonstrated that PLK4 was remarkably downregulated in HCC and could be served as a potential prognostic marker for patients with this deadly disease.  相似文献   

19.
MYC-induced DNA damage is exacerbated in WRN-deficient cells, leading to replication stress and accelerated cellular senescence. To determine whether WRN deficiency impairs MYC-driven tumor development, we used both xenograft and autochthonous tumor models. Conditional silencing of WRN expression in c-MYC overexpressing non-small cell lung cancer xenografts impaired both tumor establishment and tumor growth. This inhibitory effect of WRN knockdown was accompanied by increased DNA damage, decreased proliferation, and tumor necrosis. In the Eμ-Myc mouse model of B-cell lymphoma, a germline mutation in the helicase domain of Wrn (Wrn(Δhel/Δhel)) resulted in a significant delay in emergence of lethal lymphomas, extending tumor-free survival by more than 30%. Analysis of preneoplastic B cells from Eμ-Myc Wrn mutant mice revealed increased DNA damage, elevation of senescence markers, and decreased proliferation in comparison with cells from age-matched Eμ-Myc mice. Immunohistochemical and global gene expression analysis of overt Eμ-Myc Wrn(Δhel/Δhel) lymphomas showed a marked increase in expression of the CDK inhibitor, p16(Ink4a), as well as elevation of TAp63, a known mediator of senescence. Collectively, these studies show that in the context of Myc-associated tumorigenesis, loss of Wrn amplifies the DNA damage response, both in preneoplastic and neoplastic tissue, engaging activation of tumor suppressor pathways. This leads to inhibition of tumor growth and prolonged tumor-free survival. Targeting WRN or its enzymatic function could prove to be an effective strategy in the treatment of MYC-associated cancers.  相似文献   

20.
Chimeric antigen receptor T cell (CAR-T) therapy has so far proved itself as a reliable therapeutic option for the treatment of relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL), diffuse large B-cell lymphoma (DLBCL), multiple myeloma (MM), and mantle cell lymphoma (MCL). However, this picture is not as colorful when it comes to the treatment of solid tumors mainly due to the lack of definitive tumor antigens, as well as the immunosuppressive tumor microenvironments and poor CAR-T infiltration. The recent developments in bioinformatics and cell biology, such as single-cell RNA sequencing, have offered silver linings in the subject of tumor antigen discovery. In the current review, we summarize the development of some CAR-T therapies that target novel tumor antigens, rather than the traditionally CAR-T-targeted ones, and briefly discuss the clinical antitumor achievements of those evaluated in patients, so far. Furthermore, we propose some tumor antigens that might someday be therapeutically beneficial while targeted by CAR-Ts based on the experimental evaluations of their specific monoclonal antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号