首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two contrasting rice (Oryza sativa L.) cultivars, i.e. Wuyujing 3 (WYJ3, Cd-tolerant) and Shanyou 63 (SY63, Cd-sensitive), were grown on a red soil (Ultisol) to study both individual and combined phytotoxicity of arsenic (As) and cadmium (Cd) in terms of Cd and As availability, their uptake and accumulation, antioxidant defense activity and oxidative damage. The antioxidant defense system examined in this study included enzymatic and non-enzymatic molecular antioxidants such as superoxide dismutase (SOD), peroxidase (POD), glutathione (GSH) and ascorbic acid (AsA). Results showed that As or Cd treatment decreased root and shoot biomass in both cultivars compared with their corresponding control (no Cd or As treatment), although less severe inhibition of plant growth was observed in WYJ3 than in SY63. Moreover, rice growth was inhibited more severely by Cd treatment than by As treatment, which could be explained by the higher amount of available Cd (60%) (0.1 M HCl-extractable Cd) compared to the lower amount of available As (15%) (0.5 M NaH2PO4-extractable As) in their postharvest soils. However, shoot biomass in cultivar SY63, and root and shoot biomass in cultivar WYJ3 were significantly higher in the As plus Cd treatment than in the Cd treatment alone, showing that the combined toxicity of these two heavy metals was not additive and on the contrary, As mitigated Cd-induced growth inhibition. The As plus Cd treatment also significantly decreased As or Cd concentrations both in roots and in shoots of the two rice cultivars compared with the As or Cd treatment alone, respectively. On the other hand, treatment with As or Cd alone significantly decreased the SOD and POD activities, and GSH and AsA concentrations, while the activities of these enzymes and the concentrations of GSH and AsA were significantly higher in the As plus Cd treatment than in the Cd treatment alone, resulting in less severe oxidative damage as indicated by the lower concentration of MDA in the As plus Cd treatment (P < 0.05). However, no significant difference was observed in the antioxidant defense activity between the As plus Cd treatment and the As treatment alone. These results suggest that the combined toxicity of As and Cd in rice is lower than that of individual Cd or As, which might be attributed to the decreased uptake and accumulation of Cd and As, and the less oxidative stress caused by the interactive effects of As with Cd both in rhizosphere and in plants.  相似文献   

2.
In the present study, rice seedlings were exposed to a range of Cd concentrations (0.1 μM, 1 μM, 10 μM, 100 μM and 1 mM) for 15 days and a combination of different molecular approaches were used to evidence Cd effects and to assess the plants’ ability to counteract metal toxicity. At a macroscopical level, only the highest Cd concentration (1 mM) caused a complete plant growth inhibition, whereas the lowest concentrations seemed to stimulate growth. At genome level, the amplified fragment length polymorphism (AFLP) technique was applied to detect DNA sequence changes in root cells, showing that all the Cd concentrations induced significant DNA polymorphisms in a dose-dependent manner. Data also evidenced the absence of preferential mutation sites.Plant responses were analysed by measuring the levels of gluthatione (GSH) and phytochelatins (PCs), the thiol-peptides involved in heavy metal tolerance mechanisms. Results showed a progressive increase of GSH up to 10 μM of Cd treatment, whereas a significant induction only of PC3 was detected in roots of plants exposed to 100 μM of Cd. As suggested by the proteome analysis of root tissues, this last concentration strongly induced the expression of regulatory proteins and some metabolic enzymes. Furthermore, the treatment with 10 μM of Cd induced changes in metabolic enzymes, but it mainly activated defence mechanisms by the induction of transporters and proteins involved in the degradation of oxidatively modified proteins.  相似文献   

3.
Most nutrient solution studies on the interactions between silicon (Si) and cadmium (Cd) are short term. Here we reported a long-term experiment in which rice (Oryza sativa L.) was cultured for 105 days and harvested at four different growth stages to measure biomass accumulation and Cd uptake and distribution in shoots and roots. Exogenous Si increased shoot biomass by 61–238% and root biomass by 48–173% when the culture solution was free of Cd. When 2 μmol L?1 Cd was added, Si supply increased shoot and root biomass by 125–171% and by 100–106% compared to the zero-Si treatment. Increasing the Cd concentration to 4 μmol L?1 decreased the beneficial effects of Si on root and shoot biomass. Silicon supply decreased shoot Cd concentrations by 30–50% and Cd distribution ratio in shoot by 25.3–46%, compared to the treatment without Si supply. Additionally, lower Si supply or more serious Cd stress would lead to roots with bigger biomass and higher Si concentration. Energy-dispersive X-ray microanalysis showed that both Si and Cd accumulated synchronously in the border and middle of phytoliths of the shoots. We conclude that Si enhances plant growth and decreases Cd accumulation in shoots and thereby helps to lower the potential risks of food contamination.  相似文献   

4.
Several abiotic factors cause molecular damage to plants either directly or through the accumulation of reactive oxygen species such as hydrogen peroxide (H2O2). We investigated if application of nitric oxide (NO) donor 2,2′-(hydroxynitrosohydrazono) bis-ethanimine (DETA/NO) could reduce the toxic effect resulting from short-term salt stress. Salt treatment (150 mM NaCl) alone and in combination with 10 μM DETA/NO or 10 μM DETA were given to matured soybean root nodules for 24 h. Salt stress resulted in high H2O2 level and lipid peroxidation while application of DETA/NO effectively reduced H2O2 level and prevented lipid peroxidation in the soybean root nodules. NO treatment increased the activities of ascorbate peroxidase and dehydroascorbate reductase under salt stress. Whereas short-term salt stress reduced AsA/DHAsA and GSH/GSSG ratios, application of the NO donor resulted in an increase of the reduced form of the antioxidant metabolites thus increasing the AsA/DHAsA and GSH/GSSG ratios. Our data suggests a protective role of NO against salt stress.  相似文献   

5.
We investigated the responses of phytochelatins (PCs), glutathione (GSH) and other non-protein thiols in Cd hyperaccumulator Arabis paniculata after Cd exposure. Applying γ-glutamylcysteine synthetase (γ-ECS) inhibitor, l-buthionine-sulfoximine (BSO), the roles of PCs in Cd tolerance and Cd accumulation in A. paniculata were evaluated. Plants were exposed to four Cd concentrations (0, 50, 100 and 250 μM) for different times (2w or 3w) with and without BSO. Overall, Cd exposure had little impact on plant biomass after 2w or 3w of growth except at the highest Cd level. A. paniculata tolerated ≤100 μM Cd with up to 1127 mg kg?1 Cd in the shoots and 5624 mg kg?1 Cd in the roots after 3w of Cd exposure. Cd exposure induced formation of PCs and three unknown thiols in the roots, but none were detected in the shoots. BSO had no significant effect on Cd sensitivity in plants though it reduced Cd accumulation in the roots. In addition, the molar ratio of PCs:Cd, which ranged from 0.7 to 1.3 after exposing to 50–100 μM Cd without BSO in the roots, was close to the value expected for PC-mediated Cd sequestration in plants. Those data indicate that GSH and PCs did not contribute to Cd tolerance in the shoots and Cd transport from the root to shoot in A. paniculata, but they may play an important role in Cd accumulation and Cd complexation in the roots of A. paniculata.  相似文献   

6.
The effect of lanthanum on the metabolism of ascorbate (AsA) and glutathione (GSH) in the leaves of maize seedlings under cadmium stress was investigated. The findings showed that Cd remarkably increased electrolyte leakage (EL), the activities of ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase (MDHAR), glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and γ-glutamylcysteine synthetase, and the content of reduced AsA, reduced GSH, total AsA, total GSH, malondialdehyde (MDA), and Cd, compared with control. However, Cd significantly decreased the dry biomass of roots and shoots. Treatment with La + Cd evidently increased the activities of above enzymes except MDHAR, the content of reduced AsA, reduced GSH, total AsA and total GSH, and the dry biomass of roots and shoots, compared with Cd stress alone. Meanwhile, treatment with La + Cd remarkably decreased EL and the content of Cd and MDA compared with Cd stress alone. Our results suggested that La could be used as a regulator to improve the Cd tolerance of maize for its role in the alleviation of Cd-induced oxidative damage by regulating the metabolism of AsA and GSH.  相似文献   

7.
The influence of silicon on the growth of maize plants cultivated in hydroponics in the presence of cadmium (5 μM) was investigated. Four different treatments were used: Control (C), Cadmium (Cd), Silicon (Si) and Cadmium plus Silicon (Cd + Si). The Si concentration was 35 mM. Thirteen-day-old plants were harvested. Growth parameters (length of primary seminal root, leaf area of first and second fully developed leaves, fresh and dry weight of below- and above-ground parts of the plants), and Cd concentration and total amount of Cd in the below- and above-ground parts were determined. In roots, the development of the endodermal barrier was observed by fluorescent staining with Fluorol yellow 088.Inhibitory effects of Cd on plant growth were observed. Silicon treatment in the absence of Cd had positive effects on most of observed growth parameters compared with the control. Moreover, Si in the Cd + Si treatment improved all growth parameters compared with the cadmium treatment. Silicon increased the cell-wall extensibility both in Si and Cd + Si treatments when compared with the control. Alleviation of the Cd-inhibitory effect on maize plants by Si was not due to exclusion of Cd from the plant; in contrast, Cd concentration in below- and above-ground plant parts and the total amount of Cd per plant were significantly higher in the Cd + Si plants than in the Cd treatment. The increased Cd content in Cd + Si plants was correlated with the development of the endodermis; during the second stage of endodermal development, suberin lamellae were formed at a greater distance from the root apex in the Cd + Si than in the Cd treatment. Silicon itself did not influence the development of suberin lamellae in the maize roots compared with the control.  相似文献   

8.
《Journal of plant physiology》2014,171(18):1748-1756
Zinc (Zn) deficiency is an important mineral disorder affecting rice production, and is associated with the formation of oxidative stress in plant tissue. In this study we investigated processes of oxidative stress formation as affected by ascorbate (AsA) in two pairs of contrasting rice genotypes: (i) two indica lines differing in field tolerance to Zn deficiency and AsA metabolism, i.e. RIL46 (tolerant) and IR74 (sensitive); (ii) the japonica wild-type Nipponbare (tolerant) and the AsA deficient TOS17 mutant line ND6172 (sensitive) having a 20–30% lower AsA level due to the knockout of an AsA biosynthetic gene (OsGME1). Plants were grown hydroponically under +Zn and −Zn conditions for 21 days and samples were investigated after 7, 14, and 21 days of treatment. Tissue Zn concentrations below 20 mg kg−1 in the −Zn treatment induced the formation of visible symptoms of Zn deficiency from day 14 in all genotypes, but especially in the sensitive IR74. Significant increases in lipid peroxidation were observed in the leaves of the sensitive genotypes IR74 and ND6172, and in the roots of IR74, but not in the tolerant genotypes. At day 21, the tolerant genotypes RIL46 and Nipponbare had significantly higher AsA levels in both shoots and roots compared to the sensitive lines. Consistently, higher levels of hydrogen peroxide formation in leaves and roots of the sensitive genotypes were detected using staining methods. Differences in foliar hydrogen peroxide formation between IR74 and RIL46 became apparent on day 7 and between ND6172 and Nipponbare on day 14. Similarly, genotypic differences in hydrogen peroxide formation in the roots were seen on day 21. In conclusion, our data demonstrate that Zn deficiency leads to a redox imbalance in roots and shoots prior to the occurrence of visible symptoms, and that the antioxidant AsA plays an important role in maintaining the redox homeostasis under Zn deficiency.  相似文献   

9.
The reduction potential of a cell is related to its fate. Proliferating cells are more reduced than those that are differentiating, whereas apoptotic cells are generally the most oxidized. Glutathione is considered the most important cellular redox buffer and the average reduction potential (Eh) of a cell or organism can be calculated from the concentrations of glutathione (GSH) and glutathione disulfide (GSSG). In this study, triplicate groups of cod larvae at various stages of development (3 to 63 days post-hatch; dph) were sampled for analyses of GSSG/2GSH concentrations, together with activities of antioxidant enzymes and expression of genes encoding proteins involved in redox metabolism. The concentration of total GSH (GSH+GSSG) increased from 610±100 to 1260±150 μmol/kg between 7 and 14 dph and was then constant until 49 dph, after which it decreased to 810±100 μmol/kg by 63 dph. The 14- to 49-dph period, when total GSH concentrations were stable, coincides with the proposed period of metamorphosis in cod larvae. The concentration of GSSG comprised approximately 1% of the total GSH concentration and was stable throughout the sampling series. This resulted in a decreasing Eh from −239±1 to −262±7 mV between 7 and 14 dph, after which it remained constant until 63 dph. The changes in GSH and Eh were accompanied by changes in the expression of several genes involved in redox balance and signaling, as well as changes in activities of antioxidant enzymes, with the most dynamic responses occurring in the early phase of cod larval development. It is hypothesized that metamorphosis in cod larvae starts with the onset of mosaic hyperplasia in the skeletal muscle at approximately 20 dph (6.8 mm standard length (SL)) and ends with differentiation of the stomach and disappearance of the larval finfold at 40 to 50 dph (10–15 mm SL). Thus, metamorphosis in cod larvae seems to coincide with high and stable total concentrations of GSH.  相似文献   

10.
Responses of Japanese mustard spinach (JM-spinach; Brassica rapa L. var. pervirdis) were investigated at elevated levels of arsenic (As). Plants were grown hydroponically in the greenhouse under 0, 6.7, 33.5 and 67 μM As (equal to 0, 0.5, 2.5 and 5 mg L?1 As, respectively) for 14 days. Arsenic was used as sodium meta-arsenite (NaAsO2). Toxicity symptom was solely shown as shoot growth repression at 33.5 and 67 μM As exposures. Dry weight (DW) enhanced by 19.4% in shoot and 38.9% in root in the 6.7 μM As level as compared to control but decreased by 48.1% and 72.1% DW in shoot and 24.1% and 61.1% DW in root in the 33.5 and 67 μM As levels, respectively. This result indicated that As at lower concentration might have slight stimulating effect on JM-spinach growth, but toxicity increased with increasing As. Based on the regression lines between growth and As concentration in the plant tissues, the critical toxicity level (CTL) of As in JM-spinach shoot was 7.85 μg g?1 DW considering 10% DW reduction. The CTL for the root was almost 2110 μg As g?1 DW, indicating that shoot of JM-spinach was more sensitive to As-toxicity than that of root. Arsenic concentrations increased in plant parts with increasing As in the medium. Arsenic concentrations were also compared in DW and fresh weight (FW) basis. The JM-spinach concentrated unaccepted level of As in shoots for human consumption in the higher As levels without showing visible toxicity symptom. In spite of decreasing iron (Fe) concentration in shoot in the highest As level, chlorophyll index did not decrease accordingly. Phosphorus (P) concentration also decreased. Phosphorus concentration decreased much more than Fe concentration. Low P might help to mobilize Fe in shoots, resulting in higher chlorophyll index at 67 μM As level. Phosphorus might compete with Fe in shoot tissues of As-stressed JM-spinach.  相似文献   

11.
Secondary metabolites of lichens can be involved in production of chelates with heavy metals. We hypothesized that parietin plays important role in protection of photobiont cells in Xanthoria parietina from an excess of cadmium ions. Two types of X. parietina lichen thalli, natural with presence of secondary metabolite parietin (p+) as well as without parietin (p−) were exposed to different doses of cadmium (up to 300 μmol g−1 dw). Based on determination of the total and intracellular Cd-accumulation, ergosterol and thiobarbituric acid reactive substances (TBARS) content did not show statistically significant differences in the response of both types of thalli (p+ and p−). However, a stronger toxic effect of the highest Cd-dose on photosynthetic pigment content and chlorophyll a fluorescence was observed in the parietin-depleted thalli. The protective role of parietin against Cd excess was better supported and concluded from the differences observed in the production of non-protein thiol compounds (cysteine, glutathione and phytochelatins) involved in Cd detoxification. In the p+ thalli Cys content was stable but GSH content slightly decreased in the studied Cd range, while in the p− thalli these compounds were completely absent at high Cd doses. At Cd doses higher than 37.5 μmol Cd g−1 dw, toxic to both types of X. parietina thalli, Cys and GSH contents were significantly higher in p+ than in p− thalli. Also, the photobiont partner in the p+ thalli was better protected of the metal exposition, and able to produce phytochelatins (PCs) over the whole range of metal, while in the p− thalli the production was completely inhibited at 75 μmol Cd g−1 dw and higher concentrations, together with the inhibition of cysteine (Cys) and reduced glutathione (GSH) production. The obtained results indicate that the parietin layer is a natural barrier decreasing Cd access to algal cells in X. parietina. Comparison of PCs production appeared to be the most sensitive marker for estimation of Cd availability to photobiont in the symbiotic system.  相似文献   

12.
The impact of climatic change on crop production is a major global concern. One of the climatic factors, ultraviolet-B radiation (UV-B; 280–320 nm), which is increasing as a result of depletion of the global stratospheric ozone layer, can alter crop productivity. As the initial step in development of UV-B tolerant rice cultivars for the southern U.S., in this study we screened popular southern U.S. rice cultivars for variation in tolerance to elevated UV-B radiation with respect to morphological, phenological and physiological parameters. Plants grown in the greenhouse at the Texas AgriLife Research and Extension Center in Beaumont, Texas, U.S. were exposed to 0, 8 or 16 kJ m−2 day−1 UV-B radiation for 90 days. Our results showed differences among southern US rice cultivars in response to UV-B treatments with respect to leaf photosynthetic rate (Pn), leaf phenolic concentration, pollen germination (PG), spikelet fertility (SF), leaf number, leaf area, and yield. For most of the cultivars, plants exposed to enhanced UV-B radiation showed decreased Pn, PG, SF and yield and increased spikelet abortion and leaf phenolic concentration compared to the plants grown in a UV-B-free environment. In this study, cultivar ‘Clearfield XL729’ performed better than the other cultivars under enhanced UV-B radiation.  相似文献   

13.
Barley is the fourth most important crop in the world. Development of a regeneration system using immature embryos is both time consuming and laborious. The present study was initiated with a view to develop a regeneration system in six genotypes of Indian barley (Hordeum vulgare) cultivars as a prerequisite to transformation. The mature embryos were excised from seeds and cultured on MS medium supplemented with high and low concentrations of cytokinins and auxins respectively. The MS medium containing 3 mg/L N6-benzylaminopurine (BA) and 0.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) was found to be the most effective for multiple shoot formation in HOR7231 cultivar that could produce 12 shoots per explant. The other cultivars HOR4409 and HOR3844 produced a minimum number of adventitious shoots (1.33 and 1.67 respectively) on MS medium supplemented with 1 mg/L BA and 0.3 mg/L 2,4-D. The elongated shoots were separated and successfully rooted on MS medium containing 1 mg/L indole-3-acetic acid (IAA). The response of different barley cultivars was found to be varying with respect to multiple shoot production. This is the first report of multiple shoot induction and plantlet regeneration in Indian cultivar of barley which would be useful for genetic transformation.  相似文献   

14.
Cadmium (Cd) toxicity of rice (Oryza sativa L. cv. Taichung Native 1) seedlings was evaluated by the decrease in chlorophyll content and the increase in malondialdehyde (MDA) in the second leaves of rice seedlings. CdCl2 (5 μM) treatment was accompanied by a decrease in the contents of ascorbic acid (AsA) and AsA + dehydroascorbate (DHA) and in the ratios of AsA/DHA in leaves. However, CdCl2 treatment resulted in an increase in DHA content in leaves. Moreover, the decrease in AsA content was prior to the occurrence of chlorosis and associated with the increase in MDA content in the leaves of seedlings treated with Cd. Pretreatment with 0.5 mM AsA or l-galactono-1,4-lactone (GalL), the biosynthetic precursor of AsA, for 6 h resulted in an increase in the contents of AsA and reduced glutathione (GSH), the ratios of AsA/DHA and GSH/oxidized glutathione, and the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) in the leaves of rice seedlings. Quantitative RT-PCR was applied to quantify the mRNA levels for OsAPX and OsGR genes from rice leaves to examine the effect of AsA or GalL pretreatment on the expression of OsAPX and OsGR genes in rice leaves. The expression of OsAPX2, OsAPX3, OsAPX4, OsAPX5, OsAPX6, OsAPX7, and OsGR1 was increased by AsA or GalL pretreatment. Rice seedlings pretreated with AsA or GalL were observed to reduce the subsequent Cd-induced toxicity. Our results suggest that AsA content may play a role in regulating Cd toxicity of rice seedlings.  相似文献   

15.
Metal hyperaccumulation is of great interest in recent years because of its potential application for phytoremediation of heavy metal contaminated soils. In this study, a field survey and a hydroponic experiment were conducted to study the accumulation characteristics of lead (Pb), zinc (Zn) and cadmium (Cd) in Arabis paniculata Franch., which was found in Yunnan Province, China. The field survey showed that the wild population of A. paniculata was hyper-tolerant to extremely high concentrations of Pb, Zn and Cd, and could accumulate in shoots an average level of 2300 mg kg?1 dry weight (DW) Pb, 20,800 mg kg?1 Zn and 434 mg kg?1 Cd, with their translocation factors (TFs) all above one. Under the hydroponic culture, stimulatory effects of Pb, Zn and Cd on shoot dry biomass were noted from 24 to 193 μM Pb, 9 to 178 μM Cd and all Zn supply levels in nutrient solution, while the effects were not obvious in the roots. Chlorophyll concentrations in Pb, Zn and Cd treatments showed an inverted U-shaped pattern, consistent with the change of plant biomass. Pb, Zn and Cd concentrations in the shoots and roots increased sharply with increasing Pb, Zn and Cd supply levels. They reached > 1000 mg kg?1 Pb, 10,000 mg kg?1 Zn and 100 mg kg?1 Cd DW in the 24 μM Pb, 1223 μM Zn and 9 μM Cd treatment, respectively, in which the plants grew healthy and did not show any symptoms of phytotoxicity. The TFs of Zn were basically higher than one and the amount of Zn taken by shoots ranged from 78.7 to 90.4% of the total Zn. However, the TFs of Pb and Cd were well below one, and 55.0–67.5% of total Pb and 57.8–83.5% of total Cd was accumulated in the shoots. These results indicate that A. paniculata has a strong ability to tolerate and hyperaccumulate Pb, Zn and Cd. Meanwhile, suitable levels of Pb, Zn and Cd could stimulate the biomass production and chlorophyll concentrations of A. paniculata. Thus, it provides a new plant material for understanding the mechanisms of stimulatory effect and co-hyperaccumulation of multiple heavy metals.  相似文献   

16.
A hydroponics culture experiment was conducted to investigate the effect of iron plaque on Cd uptake by and translocation within rice seedlings grown under controlled growth chamber conditions. Rice seedlings were pre-cultivated for 43 days and then transferred to nutrient solution containing six levels of Fe (0, 10, 30, 50, 80 and 100 mg L−1) for 6 days to induce different amounts of iron plaque on the root surfaces. Seedlings were then exposed to solution containing three levels of Cd (0, 0.1 and 1.0 mg L−1) for 4 days. In order to differentiate the uptake capability of Cd by roots with or without iron plaque, root tips (white root part without iron plaque) and middle root parts (with iron plaque) of pre-cultivated seedlings treated with 0, 30 and 50 mg L−1 Fe were exposed to 109Cd for 24 h. Reddish iron plaque gradually became visible on the surface of rice roots but the visual symptoms of the iron plaque on the roots differed among treatments. In general, the reddish color of the iron plaque became darker with increasing Fe supply, and the iron plaque was more homogeneously distributed all along the roots. The Fe concentrations increased significantly with increasing Fe supply regardless of Cd additions. The Cd concentrations in dithionite–citrate–bicarbonate (DCB)-extracts and in shoots and roots were significantly affected by Cd and Fe supply in the nutrient solution. The Cd concentrations increased significantly with increasing Cd supply in the solution and were undetectable when no Cd was added. The Cd concentrations in DCB-extracts with Fe supplied tended to be higher than that at Fe0 at Cd0.1, and at Cd1.0, DCB-Cd with Fe supplied was significantly lower. Cd concentrations in roots and shoots decreased with increasing Fe supply at both Cd additions. The proportion of Cd in DCB-extracts was significantly lower than in roots or shoots. Compared to the control seedlings without Fe supply, the radioactivity of 109Cd in shoots of seedlings treated with Fe decreased when root tips were exposed to 109Cd and did not change significantly when middle parts of roots were exposed. Our results suggest that root tissue rather than iron plaque on the root surface is a barrier to Cd uptake and translocation within rice plants, and the uptake and translocation of Cd appear to be related to Fe nutritional levels in the plants.  相似文献   

17.
In the present study, the level of thiols and activity of related enzymes were investigated in coontail (Ceratophyllum demersum L.) plants to analyze their role in combating the stress caused upon exposure to cadmium (Cd; 0–10 μM) for a duration up to 7 d. Plants showed the maximum accumulation of 1293 μg Cd g?1 dw after 7 d at 10 μM. Significant increases in the level of total non-protein thiols (NP-SH) including phytochelatins (PCs) as well as upstream metabolites of the PC biosynthetic pathway, cysteine and glutathione (GSH) were observed. In addition, significant increases in the activities of cysteine synthase (CS), glutathione-S-transferase (GST), glutathione reductase (GR), as well as in vitro activation of phytochelatin synthase (PCS), were noticed in response to Cd. In conclusion, under Cd stress, plants adapted to a new metabolic equilibrium of thiols through coordinated synthesis and consumption to combat Cd toxicity and to accumulate it.  相似文献   

18.
Kentucky bluegrass (Poa pratensis) and tall fescue (Festuca arundinacea) are hypertolerant grasses to soil cadmium contamination. Little information is available on their tolerance mechanism. A sand culture and a hydroponic culture experiment were designed to investigate the Cd chemical form changes and its translocation in different tissues. The results showed that Kentucky bluegrass and tall fescue can tolerate 50–200 mg kg−1 of soil Cd stresses and accumulate as high as 4275 and 2559 mg Cd kg−1 DW, respectively, in their shoots without the loss of shoot biomass. Their Cd hypertolerance was correlated with an increase of the undissolved Cd phosphates in the leaves in both grass species, as determined by sequential solvent extraction procedures. The superior Cd tolerance of tall fescue to Kentucky bluegrass was associated with less Cd translocation into the stele of roots and less Cd transported to leaves. The pectate- and protein-integrated Cd forms may be involved in the symplastic translocation of Cd from cortex into stele, and this may lead the higher Cd concentrations in the stele of roots and then above ground leaves via long-distance transport in Kentucky bluegrass.  相似文献   

19.
Plants of miscanthus were grown in a Cd-free solution up to 1 month before heading and then were exposed to 0, 0.75, 1.5, 2.25 and 3 mg l−1 cadmium for 36 days. All cadmium levels were toxic to miscanthus. Growth response was not dose-dependent and two toxicity thresholds were identified: one between 0 and 0.75 mg l−1 Cd, the other between 2.25 and 3 mg l−1 Cd. The former caused a biomass decrease by about 50%, whereas the latter completely inhibited growth and disrupted the mechanisms that restricted Cd translocation to the shoot. Growth of the aerial part was affected by cadmium more than that of the hypogeal one. Cadmium did not change the N concentration of different plant parts, but markedly reduced the N uptake of the plant, the N net uptake rate (NUR) and the N net translocation rate (NTR) from the rhizome to the aerial part. These two indexes equalled zero when plants ceased to grow. Otherwise, the Cd-NUR increased with Cd supply and the Cd-NTR from rhizome to aerial part showed the highest increment when plants did not grow at all. This suggests different uptake pathways for the two elements, active for nitrogen and passive for cadmium. The Cd concentration and the Cd content markedly increased with all Cd levels, following the order roots  rhizome > culms > leaves. The Cd concentration and the Cd content of aerial organs increased with Cd supply, but increments were highest between 2.25 and 3 mg l−1 Cd. The highest Cd concentrations were recorded in plants grown with 3 mg l−1 Cd and were 41 and 122 mg kg−1, respectively, for the aerial and the hypogeal plant parts. The hypogeal plant part retained most of the cadmium taken up from solution, accounting for approximately 87% of total plant cadmium with the three lower Cd levels, and for 73% with the highest one. The maximum Cd content of the entire plant was achieved with the two higher Cd levels and was approximately 4.7 mg, while the Cd content of the aerial part was highest with 3 mg l−1 Cd (1.2 mg Cd per plant) and that of the hypogeal one with 2.25 mg l−1 Cd (4 mg Cd per plant). The highest aerial content achieved in this experiment was 10-fold that obtained in a previous research when small-sized plants were exposed to the same Cd level.  相似文献   

20.
Root growth of the seedlings of maize cultivars Premia and Blitz exposed to 2 μM cadmium (Cd), nickel (Ni) or both metals acting simultaneously (Cd + Ni) for 72 h was significantly reduced but not ceased. The effect was more pronounced in the seedlings of the cv. Blitz. The heavy metals (HMs) contents increased significantly in the roots. Simultaneous application of metals had an antagonistic effect on either Cd or Ni uptake in Premia but not in Blitz. In control roots the contents of ascorbic acid (AsA) and dehydroascorbic acid (DHA) were lower and gluthatione (GSH) content was higher in Premia than in Blitz. A decrease of AsA content was induced by all metal treatments in Premia but only by Cd + Ni in Blitz while an increase was induced by single metals in this cultivar. All metal treatments increased DHA contents in both cultivars. GSH content decreased significantly in Premia treated with Cd or Cd + Ni, and in Blitz treated with Ni. Unlike the contents of AsA, DHA and GSH, the increased metal concentrations in root cells did not affect the membrane potential (E M). The changes in antioxidant contents depended on both, maize genotypes and HMs treatments. Nevertheless, the results indicated a role of antioxidative system in minimizing the effects of oxidative stress and protecting cell membranes in both maize cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号