首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The neuropeptide vasopressin and its receptor V1aR are broadly implicated in social behavior and play a central role in several key aspects of male mating tactics in voles. In the prairie vole, a microsatellite in the cis-regulatory region of the gene encoding V1aR (avpr1a) provides a potential genetic basis for individual variation in neural phenotype and behavior; recent studies found that allele length predicts V1aR expression and male social attachment in the laboratory. Here, we explore the relationship between avpr1a microsatellite length, V1aR neural phenotype, and field measures of monogamy and fitness in male prairie voles. We found significant effects of allele length on V1aR expression in structures integral to pairbond formation. These effects did not, however, translate to differences in mating tactics or reproductive success. Together, these data suggest that, while length polymorphism in the avpr1a microsatellite influences neuronal phenotype, this variation does not contribute significantly to male reproductive success and field behavior. We propose that previously reported behavioral effects may be mediated primarily by sequence variation at this locus, for which allele length is an imperfect proxy. By combining genetic, neuronal and ecological approaches, these data provide novel insights into the contribution of genotype to natural diversity in brain and behavior.  相似文献   

2.
Intraspecific variation in sociosexual behavior has typically been investigated in the context of its relationship with environmental factors, but neurogenetic factors can also influence sociosexual behavior. In laboratory studies of prairie voles (Microtus ochrogaster), length polymorphism of microsatellite DNA within the gene (avpr1a) encoding the vasopressin 1a receptor is correlated with variation in male sociosexual behavior. However, field studies of prairie voles have found the relationship between male avpr1a microsatellite allele length and sociosexual behavior to be more ambiguous, possibly because most males had alleles of intermediate length. We tested the hypothesis that avpr1a microsatellite allele length mediates male sociosexual behavior in field settings by releasing voles into field enclosures where every male possessed two avpr1a microsatellite alleles at least one standard error longer or shorter than the mean length in their population of origin. Voles from an Illinois and Kansas population were examined separately as social monogamy appears more prevalent in the Illinois population. Illinois males with long avpr1a microsatellite alleles had smaller home ranges and overlapped a greater proportion of the home range of the female that they overlapped the most. Kansas males showed the opposite pattern. Illinois, but not Kansas, males with long avpr1a microsatellite alleles sired offspring with more females and sired more litters. Our results support the hypothesis that genetic variation associated with the avpr1a gene plays a role in mediating male prairie vole sociosexual behavior in nature. However, the relationship between specific male behaviors and male avpr1a microsatellite allele length sometimes differed significantly between Kansas and Illinois voles, suggesting relationships between specific male sociosexual behaviors and polymorphism associated with the avpr1a locus are complex, possibly involving specific nucleotide sequences or other population‐specific genetic differences.  相似文献   

3.
Integrative studies of genetics, neurobiology and behaviour indicate that polymorphism in specific genes contributes to variation observed in some complex social behaviours. The neuropeptide arginine vasopressin plays an important role in the regulation of a variety of social behaviours, including social attachment of males to females, through its action on the vasopressin 1a receptor (V1aR). In socially monogamous prairie voles ( Microtus ochrogaster ), polymorphism in the length of microsatellite DNA within the regulatory region of the gene ( avpr1a ) encoding the V1aR predicts differences among males in neural expression of V1aRs and partner preference under laboratory conditions. However, understanding the extent to which V1aR mediates variation in prairie vole social and reproductive behaviour observed in nature requires investigating the consequences of avpr1a polymorphism and environmental influences under ecologically relevant conditions. We examined the relationship between avpr1a length polymorphism and monogamy among male prairie voles living in 0.1 ha enclosures during a time similar to their natural lifespan. We found no evidence that avpr1a genotype of males predicts variation in social monogamy measured in the field but some indices of social monogamy were affected by population density. Parentage data indicated that a male's avpr1a genotype significantly influenced the number of females with which he sired offspring and the total number of offspring sired. Total brain concentrations of V1aR mRNA were not associated with either male behaviour or avpr1a genotype. These data show that melding ecological field studies with neurogenetics can substantially augment our understanding of the effects of genes and environment on social behaviours.  相似文献   

4.
Recent discoveries of single-gene influences on social behaviour have generated a great deal of interest in the proximate mechanisms underlying the expression of complex behaviours. Length polymorphism in a microsatellite in the regulatory region of the gene encoding the vasopressin 1a receptor (avpr1a) has been associated with both inter- and intra-specific variation in socially monogamous behaviour in voles (genus Microtus) under laboratory conditions. Here, we evaluate the relationship between avpr1a length polymorphism and social associations, genetic monogamy, and reproductive success in free-living prairie vole (M. ochrogaster) populations. We found no evidence of a relationship between avpr1a microsatellite length and any of our correlates of either social or genetic monogamy in the field. Our results, especially when taken in conjunction with those of recent experimental studies in semi-natural enclosures, suggest that avpr1a polymorphism is unlikely to have been a major influence in the evolution or maintenance of social monogamy in prairie voles under natural conditions.  相似文献   

5.
Early experiences can have enduring impacts on brain and behavior, but the strength of these effects can be influenced by genetic variation. In principle, polymorphic CpGs (polyCpGs) may contribute to gene‐by‐environment interactions (G × E) by altering DNA methylation. In this study, we investigate the influence of polyCpGs on the development of vasopressin receptor 1a abundance in the retrosplenial cortex (RSC‐V1aR) of prairie voles (Microtus ochrogaster). Two alternative alleles (‘HI’/‘LO’) predict RSC avpr1a expression, V1aR abundance and sexual fidelity in adulthood; these alleles differ in the frequency of CpG sites and in methylation at a putative intron enhancer. We hypothesized that the elevated CpG abundance in the LO allele would make homozygous LO/LO voles more sensitive to developmental perturbations. We found that genotype differences in RSC‐V1aR abundance emerged early in ontogeny and were accompanied by differences in methylation of the putative enhancer. As predicted, postnatal treatment with an oxytocin receptor antagonist (OTA) reduced RSC‐V1aR abundance in LO/LO adults but not their HI/HI siblings. Similarly, methylation inhibition by zebularine increased RSC‐V1aR in LO/LO adults, but not in HI/HI siblings. These data show a gene‐by‐environment interaction in RSC‐V1aR. Surprisingly, however, neither OTA nor zebularine altered adult methylation of the intronic enhancer, suggesting that differences in sensitivity could not be explained by CpG density at the enhancer alone. Methylated DNA immunoprecipiation‐sequencing showed additional differentially methylated regions between HI/HI and LO/LO voles. Future research should examine the role of these regions and other regulatory elements in the ontogeny of RSC‐V1aR and its developmentally induced changes.  相似文献   

6.
Vasopressin regulates complex behaviors such as anxiety, parenting, social engagement and attachment and aggression in a species-specific manner. The capacity of vasopressin to modulate these behaviors is thought to depend on the species-specific distribution patterns of vasopressin 1a receptors (V1aRs) in the brain. There is considerable individual variation in the pattern of V1aR binding in the brains of the prairie vole species, Microtus ochrogaster. We hypothesize that this individual variability in V1aR expression levels is associated with individual variation in a polymorphic microsatellite in the 5' regulatory region of the prairie vole v1ar gene. Additionally, we hypothesize that individual variation in V1aR expression contributes to individual variation in vasopressin-dependent behaviors. To test these hypotheses, we first screened 20 adult male prairie voles for behavioral variation using tests that measure anxiety-related and social behaviors. We then assessed the brains of those animals for V1aR variability with receptor autoradiography and used polymerase chain reaction to genotype the same animals for the length of their 5' microsatellite polymorphism in the v1ar gene. In this report, we describe the results of this discovery-based experimental approach to identify potential gene, brain and behavior interrelationships. The analysis reveals that V1aR levels, in some but not all brain regions, are associated with microsatellite length and that V1aR levels in those and other brain regions correlate with anxiety-related and social behaviors. These results generate novel hypotheses regarding neural control of anxiety-related and social behaviors and yield insight into potential mechanisms by which non-coding gene polymorphisms may influence behavioral traits.  相似文献   

7.
In the socially monogamous prairie voles (Microtus ochrogaster), the development of a social bonding is indicated by the formation of partner preference, which involves a variety of environmental and neurochemical factors and brain structures. In a most recent study in female prairie voles, we found that treatment with the histone deacetylase inhibitor trichostatin A (TSA) facilitates the formation of partner preference through up-regulation of oxytocin receptor (OTR) and vasopressin V1a receptor (V1aR) genes expression in the nucleus accumbens (NAcc). In the present study, we tested the hypothesis that TSA treatment also facilitates partner preference formation and alters OTR and V1aR genes expression in the NAcc in male prairie voles. We thus observed that central injection of TSA dose-dependently promoted the formation of partner preference in the absence of mating in male prairie voles. Interestingly, TSA treatment up-regulated OTR, but not V1aR, gene expression in the NAcc similarly as they were affected by mating — an essential process for naturally occurring partner preference. These data, together with others, not only indicate the involvement of epigenetic events but also the potential role of NAcc oxytocin in the regulation of partner preference in both male and female prairie voles.  相似文献   

8.
Both medical and evolutionary genetics increasingly emphasize the importance of subtle, quantitative measures of phenotype. One such 'endophenotype,' the distribution of vasopressin 1a receptor (V1aR), is a recent focus for studies of social behavior. In animal studies, the neural distribution of V1aR has been linked to both social attachment and patterns of sexual fidelity. At a genetic level, a microsatellite in the cis-regulatory region of the avpr1a locus has been linked to variation in both brain and behavior. Both sets of data become more complex as the mechanistic and evolutionary details are examined more fully. I briefly summarize recent work from animal and human studies of avpr1a and highlight parallels between comparative and clinical approaches.  相似文献   

9.
Certain genes exhibit notable diversity in their expression patterns both within and between species. One such gene is the vasopressin receptor 1a gene (Avpr1a), which exhibits striking differences in neural expression patterns that are responsible for mediating differences in vasopressin-mediated social behaviors. The genomic mechanisms that contribute to these remarkable differences in expression are not well understood. Previous work has suggested that both the proximal 5′ flanking region and a polymorphic microsatellite element within that region of the vole Avpr1a gene are associated with variation in V1a receptor (V1aR) distribution and behavior, but neither has been causally linked. Using homologous recombination in mice, we reveal the modest contribution of proximal 5′ flanking sequences to species differences in V1aR distribution, and confirm that variation in V1aR distribution impacts stress-coping in the forced swim test. We also demonstrate that the vole Avpr1a microsatellite structure contributes to Avpr1a expression in the amygdala, thalamus, and hippocampus, mirroring a subset of the inter- and intra-species differences observed in central V1aR patterns in voles. This is the first direct evidence that polymorphic microsatellite elements near behaviorally relevant genes can contribute to diversity in brain gene expression profiles, providing a mechanism for generating behavioral diversity both at the individual and species level. However, our results suggest that many features of species-specific expression patterns are mediated by elements outside of the immediate 5′ flanking region of the gene.  相似文献   

10.
11.
Understanding the neurobiological substrates regulating normal social behaviours may provide valuable insights in human behaviour, including developmental disorders such as autism that are characterized by pervasive deficits in social behaviour. Here, we review the literature which suggests that the neuropeptides oxytocin and vasopressin play critical roles in modulating social behaviours, with a focus on their role in the regulation of social bonding in monogamous rodents. Oxytocin and vasopressin contribute to a wide variety of social behaviours, including social recognition, communication, parental care, territorial aggression and social bonding. The effects of these two neuropeptides are species-specific and depend on species-specific receptor distributions in the brain. Comparative studies in voles with divergent social structures have revealed some of the neural and genetic mechanisms of social-bonding behaviour. Prairie voles are socially monogamous; males and females form long-term pair bonds, establish a nest site and rear their offspring together. In contrast, montane and meadow voles do not form a bond with a mate and only the females take part in rearing the young. Species differences in the density of receptors for oxytocin and vasopressin in ventral forebrain reward circuitry differentially reinforce social-bonding behaviour in the two species. High levels of oxytocin receptor (OTR) in the nucleus accumbens and high levels of vasopressin 1a receptor (V1aR) in the ventral pallidum contribute to monogamous social structure in the prairie vole. While little is known about the genetic factors contributing to species-differences in OTR distribution, the species-specific distribution pattern of the V1aR is determined in part by a species-specific repetitive element, or 'microsatellite', in the 5' regulatory region of the gene encoding V1aR (avpr1a). This microsatellite is highly expanded in the prairie vole (as well as the monogamous pine vole) compared to a very short version in the promiscuous montane and meadow voles. These species differences in microsatellite sequence are sufficient to change gene expression in cell culture. Within the prairie vole species, intraspecific variation in the microsatellite also modulates gene expression in vitro as well as receptor distribution patterns in vivo and influences the probability of social approach and bonding behaviour. Similar genetic variation in the human AVPR1A may contribute to variations in human social behaviour, including extremes outside the normal range of behaviour and those found in autism spectrum disorders. In sum, comparative studies in pair-bonding rodents have revealed neural and genetic mechanisms contributing to social-bonding behaviour. These studies have generated testable hypotheses regarding the motivational systems and underlying molecular neurobiology involved in social engagement and social bond formation that may have important implications for the core social deficits characterizing autism spectrum disorders.  相似文献   

12.
Adaptive variation in social behaviour depends upon standing genetic variation, but we know little about how evolutionary forces shape genetic diversity relevant to brain and behaviour. In prairie voles (Microtus ochrogaster), variants at the Avpr1a locus predict expression of the vasopressin 1a receptor in the retrosplenial cortex (RSC), a brain region that mediates spatial and contextual memory; cortical V1aR abundance in turn predicts diversity in space use and sexual fidelity in the field. To examine the potential contributions of adaptive and neutral forces to variation at the Avpr1a locus, we explore sequence diversity at the Avpr1a locus and throughout the genome in two populations of wild prairie voles. First, we refine results demonstrating balancing selection at the locus by comparing the frequency spectrum of variants at the locus to a random sample of the genome. Next, we find that the four single nucleotide polymorphisms that predict high V1aR expression in the RSC are in stronger linkage disequilibrium than expected by chance despite high recombination among intervening variants, suggesting that epistatic selection maintains their association. Analysis of population structure and a haplotype network for two populations revealed that this excessive LD was unlikely to be due to admixture alone. Furthermore, the two populations differed considerably in the region shown to be a regulator of V1aR expression despite the extremely low levels of genomewide genetic differentiation. Together, our data suggest that complex selection on Avpr1a locus favours specific combinations of regulatory polymorphisms, maintains the resulting alleles at population‐specific frequencies, and may contribute to unique patterns of spatial cognition and sexual fidelity among populations.  相似文献   

13.
This study tested the hypothesis that intraspecific variations in mating systems are correlated with differences in the capacity of peripheral arginine vasopressin (AVP) to facilitate partner preferences. It has been hypothesized that differences in environmental conditions, Kansas being more xeric than Illinois, are responsible for some of the intraspecific differences in the mating systems between Kansas (KN) and Illinois (IL) prairie voles. We predicted that prairie voles from KN would be more behaviorally sensitive to peripheral AVP than prairie voles from IL. To test this hypothesis 60- to 120-day-old male and female, lab-reared, prairie voles originating from KN and IL received three subcutaneous injections of AVP or isotonic saline. Animals were then placed with an adult member of the opposite sex, designated a "partner," for a 1-hour period of cohabitation and subsequently tested for preference for the familiar partner versus a comparable stranger. Only KN males treated with AVP displayed a significant preference for the partner. Using the same experimental paradigm we also examined the ability of peripheral oxytocin (OT) to facilitate partner preference in KN prairie voles. OT facilitated partner preference in females, but not males. This finding was consistent with previous results describing the effects of peripheral OT in IL prairie voles. We also examined the hypothesis that the differential response of KN and IL males would be associated with differences in the distribution of AVP (V1a) receptors. However, there was no apparent difference in the distribution of V(1a) receptors between KN and IL males. The results of this study indicate that there is both intraspecific and intersexual variation in the regulation of social behavior in prairie voles. In addition, these findings suggest that the proximate causes of intraspecific variation may be predicted by knowledge of the habitat of origin.  相似文献   

14.
Social environments experienced at different developmental stages profoundly shape adult behavioural and neural phenotypes, and may have important interactive effects. We asked if social experience before and after weaning influenced adult social cognition in male prairie voles. Animals were raised either with or without fathers and then either housed singly or in sibling pairs. Males that were socially deprived before (fatherless) and after (singly housed) weaning did not demonstrate social recognition or dissociate spatial from social information. We also examined oxytocin and vasopressin receptors (OTR and V1aR) in areas of the forebrain associated with social behaviour and memory. Pre- and post-wean experience differentially altered receptor expression in several structures. Of note, OTR in the lateral septum—an area in which oxytocin inhibits social recognition—was greatest in animals that did not clearly demonstrate social recognition. The combination of absentee fathers on V1aR in the retrosplenial cortex and single housing on OTR in the septohippocampal nucleus produced a unique phenotype previously found to be associated with poor reproductive success in nature. We demonstrate that interactive effects of early life experiences throughout development have tremendous influence over brain–behaviour phenotype and can buffer potentially negative outcomes due to social deprivation.  相似文献   

15.
田鼠属的一些近缘种间具有独特的社会行为多态性。例如Microtusochrogaster和M .pinetorum为一夫一妻制 ,而M .montanus和M .pennsylvanicus则为独居和一夫多妻制。无论是在野外还是人工饲养的条件下 ,单配制的田鼠其雌、雄成年个体一经交配即在两者之间形成长期的配偶关系并且双亲共同哺育后代。已证明神经多肽加压素 (Vasopressin)参与了田鼠单配制行为的神经调控。本篇综述了过去以及近期关于加压素调控田鼠配偶关系形成的研究结果和进展。首先 ,阐述了加压素V1a受体 (V1aR)在脑分布的种间差异 ,并以此来鉴别特定脑区在配偶关系形成中的功能 ;其次 ,探讨了运用V1aR拮抗物的药理学方法来决定究竟哪些脑区参与配偶关系的形成 ,还描述了田鼠种间V1aR基因结构和功能的不同 ,以及这些不同对V1aR在大脑的分布和行为调控潜在的作用机制 ;最后 ,讨论了最新的研究结果 ,即对一夫多妻制田鼠进行脑V1aR基因的改造 ,从而使之表现出一夫一妻制田鼠的行为。总之 ,了解复杂的社会性行为的遗传和神经机制可以加深我们对种间和种内行为分歧进化的理解  相似文献   

16.
Scent over-marking occurs when one individual places its scent mark on top of one deposited by a conspecific. Studies have shown that animals investigating an over-mark later behave as if the top-scent mark is more important than the bottom-scent mark. Differences in response to over-marks may reflect differences in social and mating systems. Here, we ascertained the length of time that meadow voles ( Microtus pennsylvanicus ) and prairie voles ( Microtus ochrogaster ), exposed to an over-mark, maintain a preference for the mark of the top-scent donor compared with that of the bottom-scent donor. If voles had no previous sexual experience with their top-scent and bottom-scent donors, male and female meadow voles maintained a preference for their top-scent donor's mark over their bottom-scent donor's mark for 48 h. In contrast, male and female prairie voles maintained such preferences for 24 h and 12 h, respectively. If voles had prior sexual experience with either their top- or bottom-scent donor, such experience did not affect the length of time meadow voles and male prairie voles maintained a preference for their top-scent donor. Female prairie voles maintained a 12-h preference for the top-scent mark if it belonged to the mate. If the mate was the bottom-scent donor, female prairie voles showed no preference for it or the top-scent mark. These findings are discussed within the framework that an association may exist between the manner in which voles respond to over-marks and their social and mating systems.  相似文献   

17.
Social behavior of small mammals living under natural conditions often is inferred from live-trapping data, particularly from incidents in which two or more individuals are captured together in a trap. We examined whether multiple-capture data from a long-term study of prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus) were consistent with well-known species differences in social behavior (whereas prairie voles are highly social and display monogamy, meadow voles are less social and promiscuous). When possible, we also examined multiple captures of two nontarget species, northern short-tailed shrews (Blarina brevicauda) and western harvest mice (Reithrodontomys megalotis). Percent of total captures that were multiple captures and percent of total adult captures that were male–female captures were highest for prairie voles and lowest for meadow voles; values for harvest mice and shrews were in between those of the vole species, but more similar to values for meadow voles. Repeat captures of the same male–female pair occurred most commonly in prairie voles, and multiple captures of this species typically involved individuals from the same social group. Multiple captures of adults and juveniles were more common in prairie voles than meadow voles, except for captures of at least one adult male and at least one juvenile, which did not differ between the two vole species. Multiple capture data for prairie voles and meadow voles were largely consistent with established species differences in social behavior, suggesting that such data can provide an accurate indication of social and mating systems of small mammals.  相似文献   

18.
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

19.
20.
The effects of removing the stud male have not been controlled in many studies relating pregnancy block to the presence of an unfamiliar male. We examined the effects of removing the male on pregnancy success in prairie voles and meadow voles, two species that differ in degree of paternal investment. Whereas prairie vole males provide extensive care to offspring and accelerate pup development, meadow vole males display little or no care and delay development of pups. We predicted that removal of the stud male would decrease pregnancy success in prairie voles and either have no effect or increase success in meadow voles. In experiment 1, females were in male-induced estrus, and their mates were either left with them or were removed 4 h, 1 day, 2 days, or 8 days after mating. In experiment 2, females were in postpartum estrus, and their mates were either left with them or were removed 1 day, 2 days, or 8 days after birth of their first litter. Removal of the male soon after mating in postpartum estrus decreased pregnancy success in prairie voles and increased success in meadow voles. Thus, although removal of the stud male influenced litter production, the direction of the effect varied with species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号