首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ashraf Ghanem 《Chirality》2010,22(6):597-603
The solvent versatility of Chiralpak IB, a 3,5‐dimethylphenylcarbamate derivative of cellulose‐based chiral stationary phase, is demonstrated in the direct enantioselective HPLC monitoring of lipase‐catalyzed kinetic resolution of flurbiprofen in nonstandard HPLC organic solvents. Nonstandard HPLC organic solvents were used as the reaction media for the lipase‐catalysis and in mean time as diluent to dissolve the “difficult to dissolve” enzyme substrate (the acid) and as eluent for the simultaneous enantioselective HPLC baseline separation of both substrate and product in one run without any further derivatization. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The crystal structure of an alkaline protease from Bacillus alcalophilus has been determined by X-ray diffraction at 2.4 A resolution. The enzyme crystallizes in space group P2(1)2(1)2(1) with lattice constants a = 53.7, b = 61.6, c = 75.9 A. The structure was solved by molecular replacement using the structure of subtilisin Carlsberg as search model. Refinement using molecular dynamics and restrained least squares methods results in a crystallographic R-factor of 0.185. The tertiary structure is very similar to that of subtilisin Carlsberg. The greatest structural differences occur in loops at the surface of the protein.  相似文献   

3.
Xu Y  Xu JH  Pan J  Tang YF 《Biotechnology letters》2004,26(15):1217-1221
Glycidyl aryl ethers were resolved by using lyophilized cells of Trichosporon loubierii ECU1040 having epoxide hydrolase activity. The activity and enantioselectivity depended on the structure of the aryl group. Different cell/substrate ratios also influenced the optical purity of remaining substrate. An additional stability test of the whole-cell enzyme suggests that rapid deactivation of the epoxide hydrolase was the potential reason. (R)-Epoxides were prepared in gram amounts with optical purity of 87% - 99% ee.  相似文献   

4.
The development of new strategies to efficiently synthesize chiral compounds is of extreme importance. Dynamic kinetic resolution is a powerful tool to transform a racemic mixture into one enantiomer. This strategy overcomes the limitation of the maximum 50% yield in a kinetic resolution by combining it with an in situ racemization of the substrate. Recently, the coupling of enzymes and transition metals for dynamic kinetic resolution of a variety of molecules has attracted considerable attention and a deeper understanding of the compatibility of these two catalysts has been achieved.  相似文献   

5.
Bacillus alcalophilus strain ATCC 27647 showed usual growth characteristics, when inoculated at pH 10.4. The cells entered the logarithmic phase at pH 10.3, and as growth continued, the pH dropped further to a value of 8.8 in the stationary phase. B. alcalophilus strain DSM 485 showed comparable growth only in the initial phase after the addition to fresh medium. The small initial growth period was succeeded by a long lag phase, where the pH continuously dropped. The cells resumed growth after the pH was about 10.0 and continued to grow accompanied by a further decrease of external pH. The bioenergetic parameters measured in the initial growth phase of the two strains at high pH (10.1-10.3) were nearly the same, i.e. delta pH = +97 to +110 mV, delta psi = -206 to -213 mV and delta microH+ = -109 to -103 mV. The inverted proton gradient of about 1.7-1.9 at high pH decreased, as the external pH dropped during growth. This led to an increase of the proton motive force (delta microH+), although the membrane potential (delta psi) also declined. The ATP/ADP ratio of strain DSM 485 was high (4.5-5.5) at fast growth during the initial and second growth period. The ratio declined to about 1.5 at the end of the lag phase. At the initial growth phase and at the end of the lag phase, the delta microH+ was, however, the same (approximately -106 mV) and considerably lower than in the middle of the second growth period (approximately -140 mV). Fast growth, therefore, correlates with a high ATP/ADP ratio but not necessarily with a high delta microH+. Addition of gramicidin or carbonylcyanide m-chlorophenylhydrazone stopped growth of B. alcalophilus strain DSM 485 at pH 10.3 or 9.5 and gramicidin immediately decreased the internal ATP/ADP ratio from 4.5 to 1.2 at pH 10.3.  相似文献   

6.
Every Bacillus species so far examined contains menaquinone as the sole quinone. In contrast, the alkalophilic Bacillus alcalophilus has been reported to be unusual in containing ubiquinone rather than menaquinone. In this communication, we demonstrate that B. alcalophilus, like all the other bacilli, contains menaquinone as the only quinone.  相似文献   

7.
Four halogenated cyclopropane derivatives with a side chain containing a primary (1 and 2) or secondary (3 and 4) alcohol moiety were subject to kinetic resolution catalyzed by lipases. Two of them containing secondary alcohol groups gave excellent results with Candida antarctica lipase B with E-values around 1000. Two enantiopure alcohols and two enantiopure butanoates are described: (1S,1S)-1-(2′,2′-dichloro-3′,3′-dimethylcyclopropyl) ethanol (3), the corresponding (1R,1R)-butanoate (3b) and (1S,1S)-1-(1′-methyl-2′,2′-dibromocyclopropyl) ethanol (4) and the corresponding (1R,1R)-butanoate (4b).  相似文献   

8.
Novel benzoxazole derivatives were synthesized, and their antitubercular activity against sensitive and drug‐resistant Mycobacterium tuberculosis strains (M. tuberculosis H37Rv, M. tuberculosis sp. 210, M. tuberculosis sp. 192, Mycobacterium scrofulaceum, Mycobacterium intracellulare, Mycobacterium fortuitum, Mycobacterium avium, and Mycobacterium kansasii) was evaluated. The chemical step included preparation of ketones, alcohols, and esters bearing benzoxazole moiety. All racemic mixtures of alcohols and esters were separated in Novozyme SP 435‐catalyzed transesterification and hydrolysis, respectively. The transesterification reactions were carried out in various organic solvents (tert‐butyl methyl ether, toluene, diethyl ether, and diisopropyl ether), and depending on the solvent, the enantioselectivity of the reactions ranged from 4 to >100. The enzymatic hydrolysis of esters was performed in 2 phase tert‐butyl methyl ether/phosphate buffer (pH = 7.2) system and provided also enantiomerically enriched products (ee 88‐99%). The antitubercular activity assay has shown that synthesized compounds exhibit an interesting antitubercular activity. Racemic mixtures of alcohols, (±)‐4‐(1,3‐benzoxazol‐2‐ylsulfanyl)butan‐2‐ol ((±)‐ 3a ), (±)‐4‐[(5‐bromo‐1,3‐benzoxazol‐2‐yl)sulfanyl]butan‐2‐ol ((±)‐ 3b ), and (±)‐4‐[(5,7‐dibromo‐1,3‐benzoxazol‐2‐yl)sulfanyl]butan‐2‐ol ((±)‐ 3c ), displayed as high activity against M. scrofulaceum, M. intracellulare, M. fortuitum, and M. kansasii as commercially available antituberculosis drug‐Isoniazid. Moreover, these compounds exhibited twice higher activity toward M. avium (MIC 12.5) compared with Isoniazid (MIC 50).  相似文献   

9.
6 aromatic glycidyl ethers containing naphthyl, biphenyl or benzylphenyl substituents were synthesized. These epoxides together with the commercially available compounds 2-biphenylyl glycidyl ether were examined for dose-mutagenicity relationships using the plate incorporation Ames test with Salmonella typhimurium strains TA100 and TA1535. Structure-mutagenicity relationships were further examined for these compounds and 3 phenyl glycidyl ethers by concurrent testing at a single dose with strain TA100. Meaningful correlations could not be established for the mutagenicity of these epoxides to their molecular volumes, partition values, nor to their reactivities with the model nucleophile, 4-(4-nitrobenzyl) pyridine. However, it was noted that increased conjugated aromatic unsaturation with its resulting planarity led to increased mutagenicity and that this effect decreased when it was further removed from the epoxide moiety.  相似文献   

10.
11.
The crystal structure of the vitamin B(6)-dependent enzyme phosphoserine aminotransferase from the obligatory alkaliphile Bacillus alcalophilus has been determined at 1.08 A resolution. The model was refined to an R-factor of 11.7% (R(free) = 13.9%). The enzyme displays a narrow pH optimum of enzymatic activity at pH 9.0. The final structure was compared to the previously reported structure of the mesophilic phosphoserine aminotransferase from Escherichia coli and to that of phosphoserine aminotransferase from a facultative alkaliphile, Bacillus circulans subsp. alkalophilus. All three enzymes are homodimers with each monomer comprising a two-domain architecture. Despite the high structural similarity, the alkaliphilic representatives possess a set of distinctive structural features. Two residues directly interacting with pyridoxal-5'-phosphate are replaced, and an additional hydrogen bond to the O3' atom of the cofactor is present in alkaliphilic phosphoserine aminotransferases. The number of hydrogen bonds and hydrophobic interactions at the dimer interface is increased. Hydrophobic interactions between the two domains in the monomers are enhanced. Moreover, the number of negatively charged amino acid residues increases on the solvent-accessible molecular surface and fewer hydrophobic residues are exposed to the solvent. Further, the total amount of ion pairs and ion networks is significantly reduced in the Bacillus enzymes, while the total number of hydrogen bonds is increased. The mesophilic enzyme from Escherichia coli contains two additional beta-strands in a surface loop with a third beta-strand being shorter in the structure. The identified structural features are proposed to be possible factors implicated in the alkaline adaptation of phosphoserine aminotransferase.  相似文献   

12.
The lipase from wheat germ was used for the kinetic resolution of secondary alcohols. It has the opposite enantioselectivity against the Kazlauskas rule and acts as an anti-Kazlauskas catalyst. The effect of initial water activity, organic solvent, acyl donor and temperature were investigated. Wheat germ lipase had a high activity and enantioselectivity only in n-hexane with a high initial water activity (αw = 0.97), especially with 1-phenylethanol (C 32%, E > 200). Its performance changed little with the chain length of acyl donor and temperature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The detoxication of the enantiomers of glycidyl 4-nitrophenyl ether (GNPE), (?)-(R)- and (+)-(S)-GNPE, and glycidyl 1-naphthyl ether (GNE), (?)-(R)- and (+)-(S)-GNE, by rat liver glutathione transferase and epoxide hydrolase was studied. Enantioselectivity was observed with both enzymes favoring the (R)-isomers as determined by the formation of conjugate, diol, and remaining substrate measured by HPLC. Enantiomers of GNE were detoxified by cytosolic epoxide hydrolase but those of GNPE were not. Substantial nonenzymatically formed conjugates of enantiomers of GNPE were detected showing (S)-GNPE the more reactive of the pair. © 1993 Wiley-Liss, Inc.  相似文献   

14.
By employing a combination of stereospecific osmium catalyzed dihydroxylation of selected alkenes, and enantioselective lipase catalyzed kinetic resolution, nine alkenes were converted into nine enantiopure vicinal diols and nine enantiopure hydroxy butanoates.  相似文献   

15.
Bacterial products such as cell walls (CW) and peptidoglycan (PGN) are known to activate macrophages and NK cells during microbial infections. In this report, we demonstrated that whole CW and PGN of four Gram-positive bacteria are capable of enhancing the anti-poxviral activity of murine macrophage RAW 264.7 cells. Among the major Bacillus alcalophilus CW components, PGN contributes the most to antiviral activity and induces remarkably higher levels of IFN-alpha. Anti-IFN-alpha/beta antibody, but not anti-IFN-gamma, anti-IFN-gamma receptor, or anti-IL-12, reversed the PGN-induced inhibition of vaccinia virus replication and reduced nitric oxide (NO) production. Our data thus suggest that PGN induce antiviral activity through IFN-alpha and to a lesser extent, through NO production.  相似文献   

16.
中度嗜盐菌Bacillus alcalophilus DTY1分离自晋西北黄土高原盐碱土壤, 能够产生耐盐相关的相容性溶质四氢嘧啶。为了研究四氢嘧啶的功能, 克隆了DTY1菌株四氢嘧啶合成基因簇ectABC。ectA、ectB和ectC分别编码169、428和132个氨基酸的肽链, 分别与B. halodurans C-125中的二氨基丁酸乙酰基转移酶(EctA)、二氨基丁酸氨基转移酶(EctB)、四氢嘧啶合成酶(EctC)同源性达59%、81%和81%。将携带该基因簇的4.0 kb片段转入蜡质芽孢杆菌B. cereus Z后, 芽孢杆菌的耐盐度显著提高。HPLC检测发现, 在1.0% NaCl浓度下, 转化菌B. cereus Z-E菌株生成70.1 mg/g四氢嘧啶, 而在5.0%的NaCl浓度下四氢嘧啶的产量高达118.6 mg/g, 显著高于B. alcalophilus DTY1的四氢嘧啶产量。而且随着盐浓度的提高, 四氢嘧啶的合成量也随之提高。由此证明四氢嘧啶参与中度嗜盐菌重要的渗透调节, ectABC的表达受盐诱导。  相似文献   

17.
中度嗜盐菌Bacillus alcalophilus DTY1分离自晋西北黄土高原盐碱土壤, 能够产生耐盐相关的相容性溶质四氢嘧啶。为了研究四氢嘧啶的功能, 克隆了DTY1菌株四氢嘧啶合成基因簇ectABC。ectA、ectB和ectC分别编码169、428和132个氨基酸的肽链, 分别与B. halodurans C-125中的二氨基丁酸乙酰基转移酶(EctA)、二氨基丁酸氨基转移酶(EctB)、四氢嘧啶合成酶(EctC)同源性达59%、81%和81%。将携带该基因簇的4.0 kb片段转入蜡质芽孢杆菌B. cereus Z后, 芽孢杆菌的耐盐度显著提高。HPLC检测发现, 在1.0% NaCl浓度下, 转化菌B. cereus Z-E菌株生成70.1 mg/g四氢嘧啶, 而在5.0%的NaCl浓度下四氢嘧啶的产量高达118.6 mg/g, 显著高于B. alcalophilus DTY1的四氢嘧啶产量。而且随着盐浓度的提高, 四氢嘧啶的合成量也随之提高。由此证明四氢嘧啶参与中度嗜盐菌重要的渗透调节, ectABC的表达受盐诱导。  相似文献   

18.
Acid anhydrides were used as highly reactive and non-water-producing acyl donors for hydrolase-catalyzed enantioselective esterification. Efficient kinetic resolution of dl-menthol has been achieved via lipase-catalyzed enantioselective esterification in cyclohexane when propionic anhydride as an acyl donor was continuously fed into a reactor containing dl-menthol and Candida cylindracea lipase OF 360, while a high concentration of the acid anhydride in a batch reaction system with a dehydrated organic solvent did not facilitate the reaction, because water necessary for the enzyme function was consumed by the competing hydrolysis of the anhydride catalyzed by the same enzyme. The efficiency of this fed-batch reaction system using acid anhydride was higher and the enzyme stability in repeated use was much better than those of conventional batch and fed-batch reaction systems using propionic acid as an acyl donor. The optical purity (more than 98% e.e.) of the l-menthyl ester produced in the fed-batch system using the anhydride was comparable to that in the system using the corresponding acid. *** DIRECT SUPPORT *** AG903062 00002  相似文献   

19.
20.
The gene of endo-beta-1-4 xylanase, xynT, was cloned from Bacillus alcalophilus AX2000 and expressed in Escherichia coli. This XynT, which belongs to glycoside hydrolase (GH) family 10, was found to have a molecular weight of approximately 37?kDa and exhibit optimal activity at pH 7-9 and 50?°C. It exhibits a high activity towards birchwood xylan and has the ability to bind avicel. Under optimal conditions, XynT hydrolyzes all xylooligomers into xylobiose as an end product with a preference for cleavage sites at the second or third glycosidic bond from the reducing end. XynT has a different substrate affinity on xylooligomers at pH 5.0, which contributes to its low activity toward xylotriose and its derived intermediate products. This low activity may be due to an unstable interaction with the amino acids that constitute subsites of the active site. Interestingly, the addition of Co(2+) and Mn(2+) led to a significant increase in activity by up to 40 and 50?%, respectively. XynT possesses a high binding affinity and hydrolytic activity toward the insoluble xylan, for which it exhibits high activity at pH 7-9, giving rise to its efficient biobleaching effect on Pinus densiflora kraft pulp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号