首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present work experiments were carried out to study the effect of free gossypol on the growth of Candida tropicalis ZAU-1, evaluate its ability in biodegrading free gossypol, analyze the time course of solid-state fermentation, and model the microbial growth by determining the kinetics of dry matter weight loss, total carbohydrate concentration and the free gossypol content during solid-state fermentation. Results showed that the biomass in inorganic salts glucose medium were unaffected by free gossypol at 500 and 1000 mg/l levels, compared with the control group (p > 0.05); degradation of free gossypol reached 95.12% and 94.12%, respectively. A logistic equation (R2 = 0.9922), describing the growth model of C. tropicalis ZAU-1 was obtained, with the maximum values of um and Xm at 0.0970 h−1 and 21.8631% of dry matter weight loss, respectively. A good-fit curvilinear regression model was achieved to describe the change pattern of total carbohydrate concentration (R2 = 0.9910), and the biodegradation pattern of free gossypol (R2 = 0.9825). These models could be used to predict the fermentation course by C. tropicalis ZAU-1 under solid-state fermentation.  相似文献   

2.
The study investigated the suitability of stage of maturity and botanical fractions of whole crop rice (WCR) to predict yield and nutritive value of ensiled WCR for dairy cows. Eight varieties of WCR (i.e., Akichikara, Fukuhibiki, Habataki, Hamasari, Hokuriku 168, Kusanami, Tamakei 96, Yumetoiro) were harvested at four stages of maturity (i.e., 10, 22, 34, 45 days after flowering [DAF]) and ensiled. Dry matter (DM) yield at each harvest was determined. Silage samples were fractionated into four botanical fractions being: leaf blade, leaf sheath, stem and head. Silage samples were also analyzed for chemical composition, fermentation characteristics, in situ DM and N disappearance. Metabolizable energy (ME) and metabolizable protein (MP) content of samples were estimated according to Terada et al. (1988) and AFRC (1993), respectively. Relationships between maturity or proportions of botanical fractions and contents of WCR silage in terms of DM, ME and MP, and their yields, were estimated by correlation and regression analysis. Stage of maturity was positively related (P<0.001) to ME content (R2 = 0.46; y = 4.53 + 0.08X) and MP content (R2 = 0.56; y = 22.26 + 0.76X), and DM yield (R2 = 0.63; y = 9.21 + 0.12X), ME yield (R2 = 0.68, y = 36931 + 1708X) and MP yield (R2 = 0.72, y = 161.0 + 14.15X) of WCR. Proportion of leaf was negatively related to yields and nutritive value of ensiled WCR, whilst proportion of head was positively related (P<0.05 to <0.001). Proportion of head was best related to the ME content (R2 = 0.72; y = 3.26 + 0.009X), MP content (R2 = 0.72; y = 12.31 + 0.079X), and DM yield (R2 = 0.41; y = 9.02 + 0.009X), ME yield (R2 = 0.76, y = 19494 + 165.5X), and MP yield (R2 = 0.75, y = 34.37 + 1.32X) of WCR. Results suggest that to optimize yield and nutritive value, WCR should be ensiled within 40 DAF and the proportion of head should be equal to or more than 500 g per kg DM of WCR silage. Stage of maturity and proportion of head of WCR predict yields of DM, ME and MP of WCR, and their contents, in WCR silage with acceptable accuracy. However, these relationships need to be validated using large data sets and in vivo studies.  相似文献   

3.
This paper reports development and implementation of superior fermentation strategies for β-galactosidase production by Lactobacillus acidophilus in a stirred-tank bioreactor. Process parameters (aeration and agitation) were optimized for the process by application of Central Composite Design. Aeration rate of 0.5 vvm and agitation speed of 250 rpm were most suitable for β-galactosidase production (2001.2 U/L). Further improvement of the operation in pH controlled environment resulted in 2135 U/L of β-galactosidase with productivity of 142.39 U/L h. Kinetic modeling for biomass and enzyme production and substrate utilization were carried out at the aforementioned pH controlled conditions. The logistic regression model (X0 = 0.01 g/L; Xmax = 2.948 g/L; μmax = 0.59/h; R2 = 0.97) was used for mathematical interpretation of biomass production. Mercier's model proved to be better than Luedeking–Piret model in describing β-galactosidase production (P0 = 0.7942 U/L; Pmax = 2169.3 U/L; Pr = 0.696/h; R2 = 0.99) whereas the latter was more efficient in mathematical illustration of lactose utilization (m = 0.187 g/g h; Yx/s = 0.301 g/L; R2 = 0.98) among the two used in this study. Strategies like fed-batch fermentation (3694.6 U/L) and semi-continuous fermentation (5551.9 U/L) further enhanced β-galactosidase production by 1.8 and 2.8 fold respectively.  相似文献   

4.
Chlorella vulgaris was cultivated in two different 2.0 L-helicoidal and horizontal photobioreactors at 5 klux using the bicarbonate contained in the medium and ambient air as the main CO2 sources. The influence of bicarbonate concentration on biomass growth as well as lipid content and profile was first investigated in shake flasks, where the stationary phase was achieved in about one half the time required by the control. The best NaHCO3 concentration (0.2 g L−1) was then used in both photobioreactors. While the fed-batch run performed in the helicoidal photobioreactor provided the best result in terms of biomass productivity, which was (84.8 mg L−1 d−1) about 2.5-fold that of the batch run, the horizontal configuration ensured the highest lipid productivity (10.3 mg L−1 d−1) because of a higher lipid content of biomass (22.8%). These preliminary results suggest that the photobioreactor configuration is a key factor either for the growth or the composition of this microalga. The lipid quality of C. vulgaris biomass grown in both photobioreactors is expected to meet the standards for biodiesel, especially in the case of the helicoidal configuration, provided that further efforts will be made to optimize the conditions for its production as a biodiesel source.  相似文献   

5.
The purpose of the present study was to examine the patterns of responses for torque, electromyographic (EMG) amplitude, EMG mean power frequency (MPF), mechanomyographic (MMG) amplitude, and MMG MPF across 30 repeated maximal isometric (ISO) and concentric (CON) muscle actions of the leg extensors. Twelve female subjects (21.1 ± 1.4 yrs; 63.3 ± 7.4 kg) performed ISO and CON fatigue protocols with EMG and MMG signals recorded from the vastus lateralis. The relationships for torque, EMG amplitude, EMG MPF, MMG amplitude, and MMG MPF versus repetition number were examined using polynomial regression. The results indicated there were decreases (p < 0.05) across the ISO muscle actions for torque (r2 = 0.95), EMG amplitude (R2 = 0.44), EMG MPF (r2 = 0.62), and MMG MPF (r2 = 0.48), but no change in MMG amplitude (r2 = 0.07). In addition, there were decreases across the CON muscle actions for torque (R2 = 0.97), EMG amplitude (R2 = 0.46), EMG MPF (R2 = 0.86), MMG amplitude (R2 = 0.44), and MMG MPF (R2 = 0.80). Thus, the current findings suggested that the mechanisms of fatigue and motor control strategies used to modulate torque production were similar between maximal ISO and CON muscle actions.  相似文献   

6.
Microbial biolipids/biodiesels derived from volatile fatty acids (VFAs) can be a valuable alternative to plant oils if optimum fermentation conditions are determined. VFAs were used for cell mass and microbial lipid production by Cryptococcus curvatus. The lipid content in the cells increased up to 48% and 28% in batch cultures with the use of 20 g/L glucose and 6 g/L of VFAs as the carbon source, respectively. In this study, C. curvatus used VFAs as a carbon source via anaerobic digestion of rice straw hydrolysates. VFAs produced from rice straw resulted in yield of 0.43 g VFAs/g substrate and 40% higher specific growth rate(0.305 h−1) than synthetic VFAs. The highest fatty acid composition observed was C18:1, was obtained using glucose and VFAs as the carbon source to yield a cetane number of 56–59, which is suitable for biodiesel production. The cost of microbial lipids was estimated to be 0.30–1.15 USD/L given 0–150 USD/ton of VFAs cost for a yield of 0.17 g/g of lipids. Thus, VFAs can be a suitable carbon source for economical biodiesel production.  相似文献   

7.
《Small Ruminant Research》2010,91(1-3):18-26
Accurate estimates of milk production or milk intake are difficult, as all methods interfere to some degree with the natural behaviour of the dam and her young, and potentially alter milk yield itself. The present study compared milk yield obtained by the “oxytocin” method, udder dimensions (UD), the isotope dilution method, and live weight change of the lamb, in an attempt to select the most accurate and convenient way of measuring milk production in non-dairy sheep. In addition, the study investigated which of the three milk-estimation techniques was an accurate predictor of growth rates of lambs. Thirty-seven singleton-bearing and rearing ewes were milked once a week, for seven consecutive weeks, using the “oxytocin” method. Prior to each afternoon milking, the external dimensions of the ewe's udder were measured. Lambs were weighed weekly for the first seven weeks of life and live weight change was calculated. The deuterium oxide (D2O) dilution technique was used to estimate milk intake of the lambs and performed at approximately 7 days post-partum and finishing on approximately day 14. Pearson's correlation coefficients and multiple regression coefficients among techniques were calculated. The UD-models at d7 (R2 = 0.35), d35 (R2 = 0.36) and d42 (R2 = 0.34), were the best models explaining variation in milk yield (concordance correlation coefficient (CCC) = 0.49; 0.53; 0.51; for d7, d35 and d42, respectively). The lamb live weight-change model explained the variation in milk yield best at d28 (R2 = 0.32; CCC = 0.49), at d35 (R2 = 0.22; CCC = 0.36) and at d42 (R2 = 0.28; CCC = 0.44). At d14, the intake of milk by lambs as measured by the D2O technique, did not explain the variation in milk yield. In conclusion, udder dimensions, lamb live weight change and lamb milk intake are relatively poor estimators of the milk yield of singleton-rearing ewes obtained by the “oxytocin” method. Additionally, udder dimensions, milk yield and lamb milk intake do not give an accurate prediction of growth rates of singleton lambs. These results emphasize that there is a difference between ewe milk production potential and lamb milk intake, which need to be considered when estimating milk production in non-dairy animals.  相似文献   

8.
《Inorganica chimica acta》2006,359(11):3549-3556
A series of cationic trispyrazolylmethane complexes of the general form [TmRM(CH3CN)3]2+ (Tm = tris(pyrazolyl)methane, 1, R = 3,5-Me2, M = Fe(II); 2, R = 3-Ph, M = Fe(II); 3, R = 3,5-Me2, M = Co(II); 4, R = 3-Ph, M = Co(II)) with ‘piano-stool’ structures was prepared by the reaction of the N3tripodal ligands (TmR)with [(CH3CN)6M](BF4)2 in a 1:1 stoichiometric ratio. Magnetic susceptibility measurements indicate that all four complexes with BF4 counter anions are paramagnetic, high-spin systems in the solid state with μeff at high temperatures of 5.2 (1, S = 2), 5.4 (2, S = 2), 4.9 (3, S = 3/2) and 4.6 (4, S = 3/2) BM, respectively. Comparisons of bond lengths from the metal centre to the TmR nitrogen donors, and from the metal centre to the acetonitrile nitrogen donors indicate that the neutral tripodal ligands appear to be more weakly coordinated to the metal centre than are the acetonitrile ligands. Reactions of these tripodal complexes with bidentate phosphine ligands, such as 1,2-diphosphinoethane or 1,2-bis(diallylphosphino)ethane leads to displacement of the tripodal ligand, or to the formation of more thermally stable bis-ligand complexes M(TmR)2 (R = 3,5-dimethyl).  相似文献   

9.
We explored the relationships between surface-soil (1–20 cm) organic carbon isotopic signatures and associated climatic factors in central-east Asia in an attempt to develop transfer functions that can be used to retrieve the paleoclimatic information stored in the thick eolian–paleosol sequences within the area. Our analysis shows that the negative correlation between the surface-soil organic δ13C values and the mean annual precipitation is robust (R2 = 0.453; n = 196; p < 0.05) and the negative correlation with the growing-season (April–September) precipitation is more significant (R2 = 0.4966; n = 196; p < 0.05). Our study further shows that the positive correlation between the surface-soil organic δ13C values and mean growing-season aridity is most significant (R2 = 0.5805; n = 196; p < 0.05). We have smoothed both the organic δ13C values and the mean growing-season aridity values using a 3-point moving-window average-filter method in an attempt to remove some of random errors and found that the positive correlation between the two is further increased (R2 =  0.7784; n =  192; p < 0.05). These robust linear relationships demonstrate their value in reconstructing paleoclimate changes in the study area. The documented climatic dependency of the surface-soil carbon isotopic composition in the study area might have resulted both from the humidity-related isotopic enrichment processes of the dominant C3 plants (stomatal conductance and photosynthetic discrimination) and from the aridity-related abundance of C4 plants (mainly Chenopodiaceae species) along the S–N bioclimatic gradient.  相似文献   

10.
A small library of N-benzyl indolequinuclidinone (IQD) analogs has been identified as a novel class of cannabinoid ligands. The affinity and selectivity of these IQDs for the two established cannabinoid receptor subtypes, CB1 and CB2, was evaluated. Compounds 8 (R = R2 = H, R1 = F) and 13 (R = COOCH3, R1 = R2 = H) exhibited high affinity for CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively, and had lower affinities for the CB1 receptor (Ki values of 9.23 and 85.7 nM, respectively). Compound 13 had the highest selectivity of all the compounds examined, and represents a potent cannabinoid ligand with 34-times greater selectivity for CB2R over CB1R. These findings are significant for future drug development, given recent reports demonstrating beneficial use of cannabinoid ligands in a wide variety of human disease states including drug abuse, depression, schizophrenia, inflammation, chronic pain, obesity, osteoporosis and cancer.  相似文献   

11.
Retrieving leaf chlorophyll content at a range of spatio-temporal scales is central to monitoring vegetation productivity, identifying physiological stress and managing biological resources. However, estimating leaf chlorophyll over broad spatial extents using ground-based traditional methods is time and resource heavy. Satellite-derived spectral vegetation indices (VIs) are commonly used to estimate leaf chlorophyll content, however they are often developed and tested on broadleaf species. Relatively little research has assessed VIs for different leaf structures, particularly needle leaves which represent a large component of boreal forest and significant global ecosystems. This study tested the performance of 47 published VIs for estimating foliar chlorophyll content from different leaf and canopy structures (broadleaf and needle). Coniferous and deciduous sites were selected in Ontario, Canada, representing different dominant vegetation species (Picea mariana and Acer saccharum) and a variety of canopy structures. Leaf reflectance data was collected using an ASD Fieldspec Pro spectroradiometer (400–2500 nm) for over 300 leaf samples. Canopy reflectance data was acquired from the medium resolution imaging spectrometer (MERIS). At the canopy level, with both leaf types combined, the DD-index showed the strongest relationship with leaf chlorophyll (R2 = 0.78; RMSE = 3.56 μg/cm2), despite differences in leaf structure. For needleleaf trees alone the relationship with the top VI was weaker (D[red], R2 = 0.71; RMSE = 2.32 μg/cm2). A sensitivity study using simulated VIs from physically-modelled leaf (PROSPECT) and canopy (4-Scale) reflectance was performed in order to further investigate these results and assess the impacts of different background types and leaf area index on the VIs’ performance. At the leaf level, the MNDVI8 index showed a strong linearity to changing chlorophyll and negligible difference to leaf structure/type. At canopy level, the best performing VIs were relatively consistent where LAI  4, but responded strongly to differences in background at low canopy coverage (LAI = 2). This research provides comprehensive assessments for the use of spectral indices in retrieval of spatially-continuous leaf chlorophyll content at the leaf (MTCI: R2 = 0.72; p < 0.001) and canopy (DD: R2 = 0.78; p < 0.001) level for resource management over different spatial and temporal scales.  相似文献   

12.
Traditional approaches for managing aquatic resources have often failed to account for effects of anthropogenic disturbances on biota that are not directly reflected by chemical and physical proxies of environmental condition. The index of biotic integrity (IBI) is a potentially effective assessment method to integrate ecological, functional, and structural aspects of aquatic systems. A macrophyte-based IBI was developed for Minnesota lakes to assess the ability of aquatic plant communities to indicate environmental condition. The index was developed using quantitative point intercept vegetation surveys for 97 lakes that represent a range of limnological and watershed characteristics. We followed an approach similar to that used in Wisconsin to develop the aquatic macrophyte community index (AMCI). Regional adaptation of the AMCI required the identification of species representative of macrophyte communities in Minnesota. Metrics and scaling methods were also substantially modified to produce a more empirically robust index. Regression analyses indicated that IBI scores reflected statewide differences in lake trophic state (R2 = 0.57, F = 130.3, df = 1, 95, p < 0.005), agricultural (R2 = 0.51, F = 83.0, df = 1, 79, p < 0.005), urban (R2 = 0.22, F = 23.0, df = 1, 79, p < 0.005), and forested land uses (R2 = 0.51, F = 84.7, df = 1, 79, p < 0.005), and county population density (R2 = 0.14, F = 16.6, df = 1, 95, p < 0.005). Variance partitioning analyses using multiple regression models indicated a unique response of the IBI to human-induced stress separate from a response to natural lake characteristics. The IBI was minimally affected by differences in sample point density as indicated by Monte Carlo analyses of reduced sampling effort. Our analysis indicates that a macrophyte IBI calibrated for Minnesota lakes could be useful for identifying differences in environmental condition attributed to human-induced stress gradients.  相似文献   

13.
This study aimed to determine the sensorimotor strategies privileged by mountain bikers (MTB) and road cyclists (RC) for balance control. Twenty-four MTB and 24 RC (off-road Olympics, world, continental and national champions, Tour-de-France participants, on-road world cup race winner) volunteered to answer a questionnaire about the characteristics of cycling practice and perform a sensory organization test, aiming to evaluate balance control in 6 different sensory situations based upon visual and support surface perturbations (C1ES to C6ES). RC balance performances were better than those of MTB both during quiet stance eyes opened (C1ES, p = 0.011) and when only somatosensory information is disrupted (C4ES, p = 0.039), highlighting a higher use of vision to control balance in RC. Moreover, a positive correlation was shown in the whole population (MTB + RC) between the visual ratio (RVIS = C4ES/C1ES) and the proportion of riding distance of on-road cycling (ρ = 0.28, p = 0.054). In MTB, the use of proprioception (somatosensory ratio: RSOM = C2ES(eyes closed)/C1ES) was increased by a higher intensity of off-road cycling (ρ = 0.49, p = 0.018) and that of vision (RVIS) by a higher intensity of on-road cycling (ρ = 0.41, p = 0.048). The difference in sensory organization between MTB and RC could be explained by adaptive processes elaborated from environmental stimulations and technical specificities of these disciplines.  相似文献   

14.
《Process Biochemistry》2010,45(10):1677-1682
A combination of two lipases was employed to catalyze methanolysis of soybean oil in aqueous medium for biodiesel production. The two lipase genes were cloned from fungal strains Rhizomucor miehei and Penicillium cyclopium, and each expressed successfully in Pichia pastoris. Activities of the 1,3-specific lipase from R. miehei (termed RML) and the non-specific mono- and diacylglycerol lipase from P. cyclopium (termed MDL) were 550 U and 1545 U per ml respectively, and enzymatic properties of these supernatant of fermentation broth (liquid lipase) were stable at 4 °C for >3 months. Under optimized conditions, the ratio of biodiesel conversion after 12 h at 30 °C, using RML alone, was 68.5%. When RML was assisted by addition of MDL, biodiesel conversion ratio was increased to >95% under the same reaction conditions. The results suggested that combination of lipases with different specificity, for enzymatic conversion of more complex lipid substrates, is a potentially useful strategy for biodiesel production.  相似文献   

15.
Agricultural intensification is altering biodiversity patterns worldwide. Rapid and effective methods are needed to monitor these changes in farmland biodiversity, but it becomes both a cost- and time-prohibitive task, particularly for hyper-diverse groups such as arthropods. We evaluated the effectiveness of surrogates in irrigated and rainfed wheat fields in a Mediterranean farmland in NW Spain in order to get a rapid tool to assess arthropod biodiversity. We studied six groups with different ecological needs (i.e. Aphididae, Aphidiinae, Coccinellidae, Formicidae, Heteroptera and Syrphidae) at species level (147 species), genus (105), family (10, only Heteroptera) and order (19) level. Higher taxa, cross-taxa and subset-taxa or total richness approaches were tested as well as the correlation in composition between levels for the selected groups, and the influence of farming regime. Genus richness was a good surrogate of species richness in all six groups studied (R2 = 0.38–0.60), like family and order were for Heteroptera (R2 = 0.37 and 0.29, respectively). Cross-taxa analyses showed that Aphididae and Aphidiinae genera (R2 = 0.19 and 0.30, respectively) and species (R2 = 0.20 and 0.28, respectively) were good surrogates for Aphidiinae and Aphididae species respectively. Coccinellidae genera (R2 = 0.26) and species (R2 = 0.25) were good surrogates for Heteroptera species. Finally, Aphididae and Coccinellidae both at genera (R2 = 0.14 and 0.20, respectively) and at species levels (R2 = 0.12–0.22, respectively) were good surrogates for total species richness of all groups. Genera composition was the best surrogate for the species composition within each group. Farming regime had no influence on the relationships between surrogates and species patterns in most cases. Our results suggest that genera level is a useful surrogate for all the studied groups and family is appropriate for Heteroptera. Genus level provided a saving of 15% of identification time in Aphididae and 80% for Coccinellidae. This proves its usefulness to asses and monitor biodiversity in wheat croplands and the possibility to reduce costs.  相似文献   

16.
We aimed to develop a new method for evaluating the drag in front-crawl swimming at various velocities and at full stroke. In this study, we introduce the basic principle and apparatus for the new method, which estimates the drag in swimming using measured values of residual thrust (MRT). Furthermore, we applied the MRT to evaluate the active drag (Da) and compared it with the passive drag (Dp) measured for the same swimmers. Da was estimated in five-stages for velocities ranging from 1.0 to 1.4 m s−1; Dp was measured at flow velocities ranging from 0.9 to 1.5 m s−1 at intervals of 0.1 m s−1. The variability in the values of Da at MRT was also investigated for two swimmers. According to the results, Da (Da = 32.3 v3.3, N = 30, R2 = 0.90) was larger than Dp (Dp = 23.5 v2.0, N = 42, R2 = 0.89) and the variability in Da for the two swimmers was 6.5% and 3.0%. MRT can be used to evaluate Da at various velocities and is special in that it can be applied to various swimming styles. Therefore, the evaluation of drag in swimming using MRT is expected to play a role in establishing the fundamental data for swimming.  相似文献   

17.
Activated organophosphate (OP) insecticides and chemical agents inhibit acetylcholinesterase (AChE) to form OP-AChE adducts. Whereas the structure of the OP correlates with the rate of inhibition, the structure of the OP-AChE adduct influences the rate at which post-inhibitory reactivation or aging phenomena occurs. In this report, we prepared a panel of β-substituted ethoxy and γ-substituted propoxy phosphonoesters of the type p-NO2PhO-P(X)(R)[(O(CH2)nZ] (R = Me, Et; X = O, S; n = 2, 3; Z = halogen, OTs) and examined the inhibition of three AChEs by select structures in the panel. The β-fluoroethoxy methylphosphonate analog (R = Me, Z = F, n = 2) was the most potent anti-AChE compound comparable (ki ~6 × 106 M?1 min?1) to paraoxon against EEAChE. Analogs with Z = Br, I, or OTs were weak inhibitors of the AChEs, and methyl phosphonates (R = Me) were more potent than the corresponding ethyl phosphonates (R = Et). As expected, analogs with a thionate linkage (PS) were poor inhibitors of the AChEs.  相似文献   

18.
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses; therefore, the knowledge of the volumetric mass transfer coefficient (kLa) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the kLa values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium, in the absence of biomass. Aeration and agitation were selected as the independent variables using a 22 full factorial design. Both variables showed statistically significant effects on kLa, and the highest values of this parameter in both media for simple fermentation (241 s−1) and extractive fermentation with ATPS (70.3 s−1) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The kLa values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N3D2) and superficial gas velocity (Vs) determined in distilled water (α = 0.39 and β = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (α = 0.38 and β = 0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (α = 0.50 and β = 1.0). A reasonable agreement was found between the experimental data of kLa for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions.  相似文献   

19.
Response surface methodology was used to evaluate the quantitative effects of three independent variables: rapeseed moisture content, concentration of the added enzymes and conditioning temperature, on the antioxidant capacity and total phenolic, tocopherol, and phospholipid contents in the enzyme-treated rapeseed oils. The highest antioxidant capacity (1220.0, 964.8 μmol TE/100 g) total phenolic (83.3, 74.0 mg SA/100 g) and phospholipid (12,532, 12,376 mg/kg) contents reveal two rapeseed oils extruded from seeds contained 11% moisture, treated with cellulolytic and pectolytic enzymes (0.05%), respectively, and heated at 120 °C. However, the highest content of total tocopherols was determined in rapeseed oils pressed from seeds with 7% moisture, after addition of cellulolytic (0.05%) and pectolytic (0.1%) enzymes, heated at 90 and 105 °C, respectively. Total phenolic and phospholipid contents in the enzyme-treated rapeseed oils correlated significantly (p < 0.0000001) with antioxidant capacities of oils (R2 = 0.8710 and 0.6581, respectively). Experimental results of the antioxidant capacity, total phenolic, tocopherol and phospholipid contents were close to the predicted values calculated from the polynomial response surface models equations (R2 = 0.9727, 0.9870, 0.8390 and 0.9706 for the cellulolytic enzyme-assisted rapeseed oils and R2 = 0.9148, 0.9489, 0.9426 and 0.9479 for the pectolytic enzyme-assisted rapeseed oils). The optimum rapeseed moisture content, enzyme concentration and conditioning temperature for the cellulolytic and pectolytic enzyme-treated rapeseed oils were 11% and 9.7%, 0.08% and 0.1%, and 120 °C, respectively.  相似文献   

20.
Human disturbance may differentially affect the behavior of wild animals and such behavioral perturbations may have fitness consequences. To understand the effects of specific types of human disturbance on antipredator behavior, a behavior whose performance enhances survival, we studied yellow-bellied marmots (Marmota flaviventris). We quantified both antipredator vigilance and the flight initiation distance of the marmots to an approaching human in six different colony sites where we also quantified the frequency and type of human visitation. We developed an analysis framework, using linear mixed models, and found that: (1) when the presence of motorized vehicles and bicycles was high, marmots increased the proportion of time spent vigilant (pseudo R2 = 0.33 and 0.31 for motorized vehicles and bicycles, P < 0.05) and decreased the time spent foraging (pseudo R2 = 0.29 and 0.23 for motorized vehicles and bicycles, P < 0.05), (2) there was no significant effect of the presence of pedestrians on the time allocated to vigilance and foraging (pseudo R2 = 0.25 and 0.19, P > 0.05), (3) marmots decreased the flight initiation distance as disturbance of motorized vehicles (pseudo R2 = 0.85) and pedestrians (pseudo R2 = 0.84) increased (P < 0.05), and (4) when we considered bicycles as the disturbance, juveniles tolerated closer approaches than adults or yearlings (P < 0.001). Marmots thus responded to some human disturbance by adjusting time spent in foraging and shortening the tolerance distance. Since these behavioral responses could have significant implications for survival and reproduction, we should generally view human disturbance as something that can influence natural antipredator behavior. Importantly, based on an understanding of the differential effects of human activities on wildlife, reducing human disturbance should be taken into account for wildlife management. In addition, our approach will be useful to quantify differential effects of humans on wildlife and to enhance our ability to manage those impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号