首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although microarray technology has become more widespread as a discovery tool for bacterial pathogenesis, it remains a method available only to laboratories with access to expensive equipment and costly analysis software. Mycobacterium tuberculosis, the causative agent for tuberculosis (TB), afflicts one-third of the global population, and kills between 2 and 3 million people per year. While the majority of cases of TB occur in developing areas of the world, facilities in these regions may not be able to support microarray analysis. Additionally, a major limitation of microarrays is that only genes on the array are being assayed. With acquired virulence and drug resistance in microbes, a method less dependent on a predetermined list of gene targets is advantageous. We present a method of expression analysis based on bacterial artificial chromosomes (BACs) that can be applied with standard laboratory equipment and free analysis software. This technique, bacterial artificial chromosome fingerprint arrays (BACFA), was developed and utilised to identify expression differences between intracellular strains of M. tuberculosis, one virulent (H37Rv) and one attenuated (H37Ra). Southern blots of restriction-enzyme digested BAC fragments were sequentially hybridised with strain-specific cDNA probes to generate expression profiles that were used to isolate expression differences in broth grown and intracellular bacteria. Repeat comparisons of intracellular profiles via BACFA identified genomic regions differentially expressed by the two strains. Quantitative real-time PCR was used to assess the genes located in these fragments in order to confirm or deny the differential regulation of genes. In total, we identified six genes that were differentially regulated between strains inside the host cell (pks2, aceE, Rv1571, and frdBCD). We report that BACFA is an effective technique in the expression analysis of bacteria and can be considered complementary to the high-throughput analysis offered by microarrays.  相似文献   

2.
Mycobacterium tuberculosis has developed resistance to anti-tuberculosis first-line drugs. Multidrug-resistant strains complicate the control of tuberculosis and have converted it into a worldwide public health problem. Mutational studies of target genes have tried to envisage the resistance in clinical isolates; however, detection of these mutations in some cases is not sufficient to identify drug resistance, suggesting that other mechanisms are involved. Therefore, the identification of new markers of susceptibility or resistance to first-line drugs could contribute (1) to specifically diagnose the type of M. tuberculosis strain and prescribe an appropriate therapy, and (2) to elucidate the mechanisms of resistance in multidrug-resistant strains. In order to identify specific genes related to resistance in M. tuberculosis, we compared the gene expression profiles between the pansensitive H37Rv strain and a clinical CIBIN:UMF:15:99 multidrug-resistant isolate using microarray analysis. Quantitative real-time PCR confirmed that in the clinical multidrug-resistant isolate, the esxG, esxH, rpsA, esxI, and rpmI genes were upregulated, while the lipF, groES, and narG genes were downregulated. The modified genes could be involved in the mechanisms of resistance to first-line drugs in M. tuberculosis and could contribute to increased efficiency in molecular diagnosis approaches of infections with drug-resistant strains.  相似文献   

3.
4.

Background

Tuberculosis (TB) is the most threatening infectious disease globally. Although progress has been made to reduce global incidence of TB, emergence of multidrug resistant (MDR) TB threatens to undermine these advances. To combat the disease, novel intervention strategies effective against drug resistant and sensitive subpopulations of M. tuberculosis are urgently required as adducts in the present treatment regimen. Using THP-1 cells we have analyzed and compared the global protein expression profile of broth-cultured and intraphagosomally grown drug resistant and sensitive M.tuberculosis clinical isolates.

Results

On comparing the two dimensional (2-DE) gels, many proteins were found to be upregulated/expressed during intracellular state which were identified by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). Four proteins (adenosylhomocysteinase, aspartate carbomyltransferase, putatitive thiosulfate sulfurtransferase and universal stress protein) were present in both intracellular MDR and sensitive isolates and three of these belonged to intermediary metabolism and respiration category. Two proteins (alanine dehydrogenase and adenosine kinase) of intracellular MDR isolate and two (glucose-6-phosphate isomerase and ATP synthase epsilon chain) of intracellular sensitive isolate belonged to intermediary metabolism and respiration category. One protein (Peroxidase/Catalase) of intracellular MDR and three (HSPX, 14 kDa antigen and 10 kDa chaperonin) of sensitive isolate belonged to virulence, detoxification and adaptation category. ESAT-6 of intracellular MDR belonged to cell wall and cell processes category. Two proteins (Antigen 85-C and Antigen 85-A) of intracellular sensitive isolate were involved in lipid metabolism while probable peptidyl-prolyl cis-trans isomerase A was involved in information pathways. Four (Rv0635, Rv1827, Rv0036c and Rv2032) of intracellular MDR and two proteins (Rv2896c and Rv2558c) of sensitive isolate were hypothetical proteins which were functionally characterized using bioinformatic tools. Bioinformatic findings revealed that the proteins encoded by Rv0036, Rv2032c, Rv0635, Rv1827 and Rv2896c genes are involved in cellular metabolism and help in intracellular survival.

Conclusions

Mass spectrometry and bioinformatic analysis of both MDR and sensitive isolates of M. tuberculosis during intraphagosomal growth showed that majority of commonly upregulated/expressed proteins belonged to the cellular metabolism and respiration category. Inhibitors of the metabolic enzymes/intermediate can therefore serve as suitable drug targets against drug-resistant and sensitive subpopulations of M. tuberculosis.  相似文献   

5.
6.
Despite highly variable efficacy, BCG (Bacillus Calmette-Guérin) is the only vaccine available to prevent the tuberculosis (TB). Genomic heterogeneity between attenuated BCG strains and virulent Mycobacterium tuberculosis might help to explain this vaccine’s impaired capacity to induce long-term protection. Here, we investigate the lipid-related genes absent in attenuated BCG strains in order to correlate changes in both lipid metabolism and cell-wall lipid content to vaccine impairment. Whole genome sequences of M. tuberculosis H37Rv and the six most used BCG strains worldwide were aligned and the absent regions functionally categorized. Genomes of the BCG strains showed a total of 14 non-homologous lipid-related genes, including those belonging to mce3 operon, as well as the gene echaA1, which encodes an enoyl-CoA hydratase, and the genes encoding phospholipases PlcA, PlcB and PlcC. Taken together, the depletion of these M. tuberculosis H37Rv genomic regions were associated with marked alterations in lipid-related genes of BCG strains. Such alterations may indicate a dormant-like state and can be determining factors to the vaccine’s inability to induce long-term protection. These lipids can be further evaluated as an adjuvant to boost the current BCG-based vaccine.  相似文献   

7.
Isoniazid (INH) and rifampicin (RIF) are the two most effective drugs in tuberculosis therapy. Understanding the molecular mechanisms of resistance to these two drugs is essential to quickly diagnose multidrug-resistant (MDR) tuberculosis and extensive drug-resistant tuberculosis. Nine clinical Mycobacterium tuberculosis isolates resistant to only INH and RIF and 10 clinical pan-sensitive isolates were included to evaluate the expression of 20 putative drug efflux pump genes and sequence mutations in rpoB (RIF), katG (INH), the inhA promoter (INH), and oxyR-ahpC (INH). Nine and three MDR isolates were induced to overexpress efflux pump genes by INH and RIF, respectively. Eight and two efflux pump genes were induced to overexpress by INH and RIF in MDR isolates, respectively. drrA, drrB, efpA, jefA (Rv2459), mmr, Rv0849, Rv1634, and Rv1250 were overexpressed under INH or RIF stress. Most efflux pump genes were overexpressed under INH stress in a MDR isolates that carried the wild-type katG, inhA, and oxyR-ahpC associated with INH resistance than in those that carried mutations. The expression levels of 11 genes (efpA, Rv0849, Rv1250, P55 (Rv1410c), Rv1634, Rv2994, stp, Rv2459, pstB, drrA, and drrB) without drug inducement were significantly higher (P < 0.05) in nine MDR isolates than in 10 pan-sensitive isolates. In conclusion, efflux pumps may play an important role in INH acquired resistance in MDR M. tuberculosis, especially in those strains having no mutations in genes associated with INH resistance; basal expression levels of some efflux pump genes are higher in MDR isolates than in pan-sensitive isolates and the basal expressional differences may be helpful to diagnose and treat resistant tuberculosis.  相似文献   

8.
9.
Although host genetics influences susceptibility to tuberculosis (TB), few genes determining disease outcome have been identified. We hypothesized that macrophages from individuals with different clinical manifestations of Mycobacterium tuberculosis (Mtb) infection would have distinct gene expression profiles and that polymorphisms in these genes may also be associated with susceptibility to TB. We measured gene expression levels of >38,500 genes from ex vivo Mtb-stimulated macrophages in 12 subjects with 3 clinical phenotypes: latent, pulmonary, and meningeal TB (n = 4 per group). After identifying differentially expressed genes, we confirmed these results in 34 additional subjects by real-time PCR. We also used a case-control study design to examine whether polymorphisms in differentially regulated genes were associated with susceptibility to these different clinical forms of TB. We compared gene expression profiles in Mtb-stimulated and unstimulated macrophages and identified 1,608 and 199 genes that were differentially expressed by >2- and >5-fold, respectively. In an independent sample set of 34 individuals and a subset of highly regulated genes, 90% of the microarray results were confirmed by RT-PCR, including expression levels of CCL1, which distinguished the 3 clinical groups. Furthermore, 6 single nucleotide polymorphisms (SNPs) in CCL1 were found to be associated with TB in a case-control genetic association study with 273 TB cases and 188 controls. To our knowledge, this is the first identification of CCL1 as a gene involved in host susceptibility to TB and the first study to combine microarray and DNA polymorphism studies to identify genes associated with TB susceptibility. These results suggest that genome-wide studies can provide an unbiased method to identify critical macrophage response genes that are associated with different clinical outcomes and that variation in innate immune response genes regulate susceptibility to TB.  相似文献   

10.
11.

Background

T-cell responses against dormancy-, resuscitation-, and reactivation-associated antigens of Mycobacterium tuberculosis are candidate biomarkers of latent infection in humans.

Methodology/Principal Findings

We established an assay based on two rounds of in vitro restimulation and intracellular cytokine analysis that detects T-cell responses to antigens expressed during latent M. tuberculosis infection. Comparison between active pulmonary tuberculosis (TB) patients and healthy latently M. tuberculosis-infected donors (LTBI) revealed significantly higher T-cell responses against 7 of 35 tested M. tuberculosis latency-associated antigens in LTBI. Notably, T cells specific for Rv3407 were exclusively detected in LTBI but not in TB patients. The T-cell IFNγ response against Rv3407 in individual donors was the most influential factor in discrimination analysis that classified TB patients and LTBI with 83% accuracy using cross-validation. Rv3407 peptide pool stimulations revealed distinct candidate epitopes in four LTBI.

Conclusions

Our findings further support the hypothesis that the latency-associated antigens can be exploited as biomarkers for LTBI.  相似文献   

12.
《Genomics》2022,114(1):292-304
Mycobacterium tuberculosis (MTB) is a severe causing agent of tuberculosis (TB). Although H37Rv, the type strain of M. tuberculosis was sequenced in 1998, annotation errors of encoding genes have been frequently reported in hundreds of papers. This phenomenon is particularly severe at the 5′ end of the genes. Here, we applied a TMPP [(N-Succinimidyloxycarbonylmethyl) tris (2,4,6-trimethoxyphenyl) phosphonium bromide] labeling combined with StageTip separating strategy on M. tuberculosis H37Rv to characterize the N-terminal start sites of its annotated encoding genes. Totally, 1047 proteins were identified with 2058 TMPP labeled N-terminal peptides from all the 2625 mass spectrometer (MS) sequenced proteins. Comparative genomics analysis allowed the re-annotation of 43 proteins' N-termini in H37Rv and 762 proteins in Mycobacteriaceae. All revised N-termini start sites were distributed in 5’-UTR of annotated genes due to over-annotation of previous N-terminal initiation codon, especially the ATG. In addition, we identified and verified a novel gene Rv1078A in +3 frame different from the annotated gene Rv1078 in +2 frame. Altogether, our findings contribute to the better understanding of N-terminal of H37Rv and other species from Mycobacteriaceae that can assist future studies on biological study.  相似文献   

13.
Yu G  Fu X  Jin K  Zhang L  Wu W  Cui Z  Hu Z  Li Y 《Gene》2011,489(1):21-29
Mycobacterium tuberculosis (M.tb) is a successful human pathogen and widely prevalent throughout the world. Genomic islands (GIs) are thought to be related to pathogenicity. In this study, we predicted two potential genomic islands in M.tb genome, respectively named as GI-1 and GI-2. It is indicated that the genes belong to PE_PGRS family in GI-1 and genes involved in sulfolipid-1 (SL-1) synthesis in GI-2 are strongly associated with M.tb pathogenesis. Sequence analysis revealed that the five PGRS genes are more polymorphic than other PGRS members in full virulence M.tb complex strains at significance level 0.01 but not in attenuated strains. Expression analysis of microarrays collected from literatures displayed that GI-1 genes, especially Rv3508 might be correlated with the response to the inhibition of aerobic respiration. Microarray analysis also showed that SL-1 cluster genes are drastically down-expressed in attenuated strains relative to full virulence strains. We speculated that the effect of SL-1 on M.tb pathogenicity could be associated with long-term survival and persistence establishment during infection. Additionally, the gene Rv3508 in GI-1 was under positive selection. Rv3508 may involve the response of M.tb to the inhibition of aerobic respiration by low oxygen or drug PA-824, and it may be a common feature of genes in GI-1. These findings may provide some novel insights into M.tb physiology and pathogenesis.  相似文献   

14.
15.
Microarray Analysis of Microbial Virulence Factors   总被引:14,自引:6,他引:8       下载免费PDF全文
Hybridization with oligonucleotide microchips (microarrays) was used for discrimination among strains of Escherichia coli and other pathogenic enteric bacteria harboring various virulence factors. Oligonucleotide microchips are miniature arrays of gene-specific oligonucleotide probes immobilized on a glass surface. The combination of this technique with the amplification of genetic material by PCR is a powerful tool for the detection of and simultaneous discrimination among food-borne human pathogens. The presence of six genes (eaeA, slt-I, slt-II, fliC, rfbE, and ipaH) encoding bacterial antigenic determinants and virulence factors of bacterial strains was monitored by multiplex PCR followed by hybridization of the denatured PCR product to the gene-specific oligonucleotides on the microchip. The assay was able to detect these virulence factors in 15 Salmonella, Shigella, and E. coli strains. The results of the chip analysis were confirmed by hybridization of radiolabeled gene-specific probes to genomic DNA from bacterial colonies. In contrast, gel electrophoretic analysis of the multiplex PCR products used for the microarray analysis produced ambiguous results due to the presence of unexpected and uncharacterized bands. Our results suggest that microarray analysis of microbial virulence factors might be very useful for automated identification and characterization of bacterial pathogens.  相似文献   

16.
Mycobacterium tuberculosis is a facultative intracellular pathogen, and the ability of this bacterium to survive and to grow inside macrophages is central to its virulence. Multiple strategies are employed by M. tuberculosis to ensure survival in macrophages, including secretion of several proteins, which are good candidates to be virulence factors, drug targets for disease intervention, and vaccine antigens. However, some M. tuberculosis secreted proteins do not appear to play any role in the growth or survival of the bacterium in its mammalian host. Among these proteins are three putative cellulose-targeting proteins encoded by the genes Rv0062, Rv1090, and Rv1987. It has been previously shown that Rv0062 encodes an active cellulase. Here we report that Rv1090 and Rv1987 also encode functional proteins. Rv1090 is able to hydrolyze barley β-glucan while Rv1987 displays cellulose-binding activity on filter paper and on microcrystalline cellulose (Avicel). Collectively, these observations point toward a unique unknown relationship between M. tuberculosis and a cellulose-containing host. We hypothesize that amoeba could be such hosts.  相似文献   

17.
18.
The intracellular infections of Mycobacterium tuberculosis, which is the causative agent of tuberculosis, are regulated by many cyclic dinucleotide signaling. Rv2837c from M. tuberculosis is a soluble, stand-alone DHH-DHHA1 domain phosphodiesterase that down-regulates c-di-AMP through catalytic degradation and plays an important role in M. tuberculosis infections. Here, we report the crystal structure of Rv2837c (2.0 Å), and its complex with hydrolysis intermediate 5′-pApA (2.35 Å). Our structures indicate that both DHH and DHHA1 domains are essential for c-di-AMP degradation. Further structural analysis shows that Rv2837c does not distinguish adenine from guanine, which explains why Rv2837c hydrolyzes all linear dinucleotides with almost the same efficiency. We observed that Rv2837c degraded other c-di-NMPs at a lower rate than it did on c-di-AMP. Nevertheless, our data also showed that Rv2837c significantly decreases concentrations of both c-di-AMP and c-di-GMP in vivo. Our results suggest that beside its major role in c-di-AMP degradation Rv2837c could also regulate c-di-GMP signaling pathways in bacterial cell.  相似文献   

19.
Novel vaccines are needed to control tuberculosis (TB), the bacterial infectious disease that together with malaria and HIV is worldwide responsible for high levels of morbidity and mortality. TB can result from the reactivation of an initially controlled latent infection by Mycobacterium tuberculosis (Mtb). Mtb proteins for which a possible role in this reactivation process has been hypothesized are the five homologs of the resuscitation-promoting factor of Micrococcus luteus, namely Mtb Rv0867c (rpfA), Rv1009 (rpfB), Rv1884c (rpfC), Rv2389c (rpfD) and Rv2450c (rpfE). Analysis of the immune recognition of these 5 proteins following Mtb infection or Mycobacterium bovis BCG vaccination of mice showed that Rv1009 (rpfB) and Rv2389c (rpfD) are the most antigenic in the tested models. We therefore selected rpfB and rpfD for testing their vaccine potential as plasmid DNA vaccines. Elevated cellular immune responses and modest but significant protection against intra-tracheal Mtb challenge were induced by immunization with the rpfB encoding DNA vaccine. The results indicate that rpfB is the most promising candidate of the five rpf-like proteins of Mtb in terms of its immunogenicity and protective efficacy and warrants further analysis for inclusion as an antigen in novel TB vaccines.  相似文献   

20.
The ability of the tubercle bacillus to arrest phagosome maturation is considered one major mechanism that allows its survival within host macrophages. To identify mycobacterial genes involved in this process, we developed a high throughput phenotypic cell-based assay enabling individual sub-cellular analysis of over 11,000 Mycobacterium tuberculosis mutants. This very stringent assay makes use of fluorescent staining for intracellular acidic compartments, and automated confocal microscopy to quantitatively determine the intracellular localization of M. tuberculosis. We characterised the ten mutants that traffic most frequently into acidified compartments early after phagocytosis, suggesting that they had lost their ability to arrest phagosomal maturation. Molecular analysis of these mutants revealed mainly disruptions in genes involved in cell envelope biogenesis (fadD28), the ESX-1 secretion system (espL/Rv3880), molybdopterin biosynthesis (moaC1 and moaD1), as well as in genes from a novel locus, Rv1503c-Rv1506c. Most interestingly, the mutants in Rv1503c and Rv1506c were perturbed in the biosynthesis of acyltrehalose-containing glycolipids. Our results suggest that such glycolipids indeed play a critical role in the early intracellular fate of the tubercle bacillus. The unbiased approach developed here can be easily adapted for functional genomics study of intracellular pathogens, together with focused discovery of new anti-microbials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号