首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ERIC (Enterobacterial Repetitive Intergenic Consensus)-PCR was employed to generate stable and reproductive ERIC-PCR fingerprints of Ent. sakazakii ATCC51329. Moreover, this study also cloned and sequenced a major band of Ent. sakazakii (ATCC51329) ERIC-PCR fingerprints. The major band was amplified with primer ERIC2 and sequences extending primer ERIC 2 showed poor similarity with ERIC elements. A comparison of the nucleotide acid with other sequences available in the GenBank revealed 90% of identity with Ent. sakazakii ATCC BAA-894, and 73%-74% of identity with oligopeptiase gene or protease gene of some species from the Enterobacteriaceae family. Two primers were synthesized to develop and optimize an Enterobacter sakazakii-specific PCR based on regions of major band unique to Ent. sakazakii. The expected fragment was amplified from all of Ent. sakazkaii but not from the negative controls. As few as 10(2) CFU/ml of Ent. sakazakii of PCR were directly detected in the infant formulas. This was the case even in the presence of other bacteria. A comparison of traditional methods and new developed PCR in commercial foods suggested that without using API20-E test, the DFI chromogenic medium and FDA method showed 46.15% and 50% false positive respectively. Moreover, one false negative was observed with FDA method. In contrast, PCR was highly sensitive and specific to Ent. sakazakii. A high heterogeneity between Ent. sakazakii and the other microorganisms was found on expected fragment sequence. In addition, Ent. sakazakii ATCC51329 formed a separate branch with >5% divergence from the type strain ATCC BAA-894 and major strains.  相似文献   

2.
Cronobacter spp. are emerging opportunistic pathogens. Cronobacter sakazakii is considered as the predominant species in all infections. So far, our understanding of the species’ immunogens and potential virulence factors of Cronobacter spp. remains limited. In this study, an immunoproteomic approach was used to investigate soluble and insoluble proteins from the genome-sequenced strain C. sakazakii ATCC BAA-894. Proteins were separated using two-dimensional electrophoresis, detected by Western blotting with polyclonal antibodies of C. sakazakii BAA-894, and identified using tandem mass spectrometry (MALDI-MS and MALDI-MS/MS, MS/MSMS). A total of 11 immunoreactive proteins were initially identified in C. sakazakii BAA-894, including two outer membrane proteins, four periplasmic proteins, and five cytoplasmic proteins. In silico functional analysis of the 11 identified proteins indicated three proteins that were initially described as immunogens of pathogenic bacteria. For the remaining eight proteins, one protein was categorized as a potential virulence factor involved in protection against reactive oxygen species, and seven proteins were considered to play potential roles in adhesion, invasion, and biofilm formation. To our knowledge, this is the first time that immunogenic proteins of C. sakazakii BAA-894 have been identified as immunogens and potential virulence factors by an immunoproteomics approach. Future studies should investigate the roles of these proteins in bacterial pathogenesis and modulation of host immune responses during infection to identify their potential as molecular therapeutic targets.  相似文献   

3.
The genomic content of Enterobacter sakazakii strain ATCC BAA-894 was analyzed for variable-number tandem repeats (VNTRs). In this study we report the development of a multiple-locus VNTR analysis (MLVA) strategy for the subtyping of E. sakazakii. The method is based on a GeneScan analysis of four VNTR loci labeled with multiple fluorescent dyes. This approach was applied to a collection of 112 isolates representing all 16 of the currently defined E. sakazakii biogroups. MLVA successfully discriminated among these isolates and compared favorably with pulsed-field gel electrophoresis. The method was relatively fast and easy to perform. The potential value of MLVA as an epidemiological tool is discussed.  相似文献   

4.
Enterobacter sakazakii is an emerging, infant formula-borne pathogen that causes severe meningitis, meningoencephalitis, sepsis, and necrotizing enterocolitis in neonates and infants, with a high fatality rate. Traditional detection methods take up to 7 days to identify E. sakazakii. The outer membrane protein A gene (ompA), along with its flanking sequences from E. sakazakii (ATCC 51329), was cloned in the pGEM-T Easy vector and sequenced. Comparison of the nucleotide and deduced amino acid sequences of the ompA gene with other sequences available in the GenBank database revealed a high degree of homology with ompA genes of other gram-negative bacteria belonging to the Enterobacteriaceae. Based on regions of the ompA gene unique to E. sakazakii, two primers were synthesized to develop and optimize an E. sakazakii-specific PCR. The PCR amplified a 469-bp DNA product from all E. sakazakii strains tested but not from other bacteria. Experiments to determine the sensitivity of the PCR indicated that it could detect as few as 103 CFU/ml of E. sakazakii bacteria in infant formula directly and 10−1 CFU/ml after an 8-h enrichment step. We conclude that this PCR, combined with enrichment culturing, has the potential to be used as a rapid tool for detecting the presence of E. sakazakii in infant formula.  相似文献   

5.

Background

The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified.

Methodology/Principal Findings

We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 kb (51% GC) and 131 kb (56% GC). The genome was used to construct a 387,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10–17% absence of genes.

Conclusions/Significance

CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units.  相似文献   

6.
Aims: The detection of viable Enterobacter sakazakii cells is important due to the association of this pathogen with outbreaks of life-threatening neonatal infections. The aim of this study was to optimize a PCR-based method for selective detection of only viable Ent. sakazakii cells in the presence of dead cells, utilizing propidium monoazide (PMA) or ethidium bromide monoazide (EMA). Methods and Results: PMA or EMA was added to suspensions of viable and/or dead Ent. sakazakii cells at varying concentrations (10, 50 or 100 μg ml−1) prior to DNA isolation and PCR with Ent. sakazakii-specific primers. At concentrations of 50 and 100 μg ml−1, PMA completely inhibited PCR amplification from dead cells, while causing no significant inhibition of the amplification from viable cells. PMA was also effective in allowing selective PCR detection of only viable cells in mixtures of varying ratios of viable and dead cells. EMA was equally effective in preventing amplification from dead cells, however, it also inhibited DNA amplification from viable cells. Conclusions: This study demonstrated the efficiency of PMA for viable and dead differentiation of Ent. sakazakii, as well as the lack of selectivity of EMA for this purpose. Significance and Impact of the Study: PMA-PCR, in particular, will be useful for monitoring the resistance, survival strategies and stress responses of Ent. sakazakii in foods and the environment.  相似文献   

7.
This study focuses a bioinformatics-based prediction of arsC gene product arsenate reductase (ArsC) protein in Cronobacter sakazakii BAA-894 strain. A protein structure-based study encloses three-dimensional structural modeling of target ArsC protein, was carried out by homology modeling method. Ultimately, the detection of active binding regions was carried out for characterization of functional sites in protein. The ten probable ligand binding sites were predicted for target protein structure and highlighted the common binding residues between target and template protein. It has been first time identified that modeled ArsC protein structure in C. sakazakii was structurally and functionally similar to well-characterized ArsC protein of Escherichia coli because of having same structural motifs and fold with similar protein topology and function. Investigation revealed that ArsC from C. sakazakii can play significant role during arsenic resistance and potential microorganism for bioremediation of arsenic toxicity.  相似文献   

8.
Repetitive element sequencebased PCR (rep-PCR) was used to generate DNA fingerprints for Listeria spp. Two primer sets (REP 1R-I REP 2-I and ERIC 1R ERIC 2) used in respectively REP-and ERIC-PCR revealed that bacteria of the genus Listeria possess short repetitive extragenic palindromic elements and enterobacterial repetitive intergenic consensus sequences. Specific band profiles obtained by ERIC-PCR enabled the identification of Listeria species. With both REP-and ERIC-PCR the L. monocytogenes serotypes 1/2a, 1/2b, 1/2c, 3b and 4b could be clearly distinguished from each other. Within the serotype 1/2a, REP-PCR showed a higher discriminative potential than ERIC-PCR and a comparable discriminative potential as RAPD combining 3-4 primers.  相似文献   

9.
Cronobacter sakazakii could form yellow-pigmented colonies. However, the chemical structure and the biosynthetic pathway of the yellow pigments have not been identified. In this study, the yellow pigments of C. sakazakii BAA894 were purified and analyzed. The major components of the yellow pigments were confirmed as zeaxanthin-monoglycoside and zeaxanthin-diglycoside. A gene cluster containing seven genes responsible for the yellow pigmentation in C. sakazakii BAA894 was identified. The seven genes of C. sakazakii BAA894 or parts of them were reconstructed in a heterologous host Escherichia coli DH5α. The pigments formed in these E. coli strains were isolated and analyzed by thin layer chromatography, UV-visible spectroscopy, high performance liquid chromatography, and electron spray ionization-mass spectrometry. These redesigned E. coli strains could produce different carotenoids. E. coli strain expressing all the seven genes could produce zeaxanthin-monoglycoside and zeaxanthin-diglycoside; E. coli strains expressing parts of the seven genes could produce lycopene, β-carotene, cryptoxanthin or zeaxanthin. This study identified the gene cluster responsible for the yellow pigmentation in C. sakazakii BAA894.  相似文献   

10.
Food borne diseases are a major public health concern worldwide. Staphylococcus aureus is one of the potential food borne pathogens which causes nosocomial and community acquired infections. In the present study, 74 representative strains of S. aureus isolated and characterized in previous study from different milk samples were subjected to random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus (ERIC)-PCR to generate fingerprints to determine the genetic relationships of the isolated strains. A total of 20 RAPD patterns were generated and the number of amplified fragments obtained ranged from 0 to 8 with molecular weight ranging from 250 to 2000 bp. A dendrogram based on fingerprinting pattern grouped isolates into twelve major clusters (I–XII). In the case of ERIC-PCR 9 banding patterns were obtained with amplicons ranging from 1 to 8 and band sizes ranging from 250 to 2000 bp. A total of four major clusters (I–IV) were observed in the dendrogram based on ERIC fingerprints. The discrete banding patterns obtained both from ERIC-PCR and RAPD-PCR showed remarkably the genetic diversity of S. aureus. The findings of this study indicate that raw, bulk and pasteurized milk in the North-West Province was contaminated with toxigenic and multi-drug resistant S. aureus strains. This emphasizes the need to implement appropriate control measures to reduce contamination as well as the spread of virulent S. aureus strains to reduce the burden of disease in humans.  相似文献   

11.
The present study aimed to use enterobacterial repetitive intergenic consensus (ERIC) fingerprints to design SCAR primers for the detection of Escherichia coli. The E. coli strains were isolated from various water sources. The primary presumptive identification of E. coli was achieved using MacConkey agar. Nineteen isolates were selected and confirmed to be E. coli strains based on seven biochemical characteristics. ERIC-PCR with ERIC 1R and ERIC 2 primers were used to generate DNA fingerprints. ERIC-PCR DNA profiles showed variant DNA profiles among the tested E. coli strains and distinguished all E. coli strains from the other tested bacterial strains. A 350 bp band that predominated in five E. coli strains was used for the development of the species-specific SCAR primers EC-F1 and EC-R1. The primers showed good specificity for E. coli, with the exception of a single false positive reaction with Sh. flexneri DMST 4423. The primers were able to detect 50 pg and 100 CFU/ml of genomic DNA and cells of E. coli, respectively.  相似文献   

12.
Enterobacterial repetitive intergenic consensus based on PCR (ERIC-PCR) was used to generate DNA fingerprints for bifidobacteria and other probiotic bacteria. Two primers (ERIC 1R and ERIC 2) used in ERIC-PCR revealed that all of the probiotic bacteria tested possess enterobacterial repetitive intergenic consensus sequences with the PCR products ranging from 250 bp to 5000 bp. The bacterial strains can be differentiated by comparing fingerprint patterns. The dendrogram of the fingerprints revealed that most of the bifidobacterial wild type strains fell into one cluster at similarity level of approximately 79%.  相似文献   

13.
Aims: To investigate the role of lipopolysaccharide (LPS) structure in the stability of outer membrane and the ability of biofilm formation in Cronobacter sakazakii. Methods and Results: A C. sakazakii mutant strain LWW02 was constructed by inactivating the gene ESA_04107 encoding for heptosyltransferase I. LPS were purified from LWW02, and changes in their structure were confirmed by thin‐layer chromatography and electrospray ionization mass spectrometry. Comparing with the wild‐type strain BAA‐894, slower growth, higher membrane permeability, higher surface hydrophobicity, stronger ability of autoaggregation and biofilm formation were observed for the mutant strain LWW02. Conclusions: The gene ESA_04107 encodes heptosyltransferase I in C. sakazakii ATCC BAA‐894. The cleavage of LPS in C. sakazakii could cause its outer membrane defects and increase its ability to form biofilms. Significance and Impact of the Study: The study is important for understanding the pathogenic mechanism and efficient control of C. sakazakii.  相似文献   

14.

Background

Cronobacter sakazakii is considered as an emerging foodborne pathogen. The aim of this study was to isolate and characterize virulent strains of Cronobacter sakazakii from food samples of Bangladesh.

Result

Six (6) Cronobacter sakazakii was isolated and identified from 54 food samples on the basis of biochemical characteristics, sugar fermentation, SDS-PAGE of whole cell protein, plasmid profile and PCR of Cronobacter spp. specific genes (esak, gluA, zpx, ompA, ERIC, BOX-AIR) and sequencing. These strains were found to have moderately high antibiotic resistance against common antibiotics and some are ESBL producer. Most of the C. sakazakii isolates were capable of producing biofilm (strong biofilm producer), extracellular protease and siderophores, curli expression, haemolysin, haemagglutinin, mannose resistant haemagglutinin, had high cell surface hydrophobicity, significant resistance to human serum, can tolerate high concentration of salt, bile and DNase production. Most of them produced enterotoxins of different molecular weight. The isolates pose significant serological cross-reactivity with other gram negative pathogens such as serotypes of Salmonella spp., Shigella boydii, Shigella sonnei, Shigella flexneri and Vibrio cholerae. They had significant tolerance to high temperature, low pH, dryness and osmotic stress.

Conclusion

Special attention should be given in ensuring hygiene in production and post-processing to prevent contamination of food with such stress-tolerant virulent Cronobacter sakazakii.

Electronic supplementary material

The online version of this article (doi:10.1186/0717-6287-47-63) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background  

E. sakazakii is considered to be an opportunistic pathogen, implicated in food borne diseases causing meningitis or enteritis especially in neonates and infants. Cultural standard identification procedures for E. sakazakii include the observation of yellow pigmentation of colonies and a positive glucosidase activity. Up to now, only one PCR system based on a single available 16S rRNA gene sequence has been published for E. sakazakii identification. However, in our hands a preliminary evaluation of this system to a number of target and non-target strains showed significant specificity problems of this system. In this study full-length 16S rRNA genes of thirteen E. sakazakii strains from food, environment and human origin as well as the type strain ATCC 51329 were sequenced. Based on this sequence data a new specific PCR system for E. sakazakii was developed and evaluated.  相似文献   

16.
REP- and ERIC-PCR genotyping were used to assess genetic heterogeneity among 81 strains of Yersinia enterocolitica biotype 1A isolated from India, Germany, France and the USA. Although both gave comparable results, ERIC fingerprints discriminated the strains better. The rep- (REP and ERIC) PCR genotyping showed that strains having different serotypes produced identical rep-profiles indicating their limited genetic diversity. The concatenated dendrogram of REP- and ERIC-PCR fingerprints clustered the biotype 1A strains into two major groups. In each group, majority of the Indian, European and American strains exhibited similarities ranging from 85% to >95%. Similarity of rep-PCR fingerprints amongst strains isolated from widely separated geographical regions revealed existence of a limited number of clonal groups of Y. enterocolitica biotype 1A. The present study failed to reveal unequivocal relationships between rep-PCR genotypes and the source of isolation. However, the clinical serotype O:6,30-6,31 strains formed a tight cluster and the aquatic O:6,30-6,31 strains formed a yet another tight cluster.  相似文献   

17.
大肠杆菌MG1655菌株ERIC-PCR图谱主带序列组成分析   总被引:20,自引:1,他引:19  
ERIC-PCR已经在细菌分类,鉴定及混合菌群分析中得到广泛应用,但对其产物形成规律的认识仍存在分歧,以大肠杆菌MG1655为对象,对其ERIC-PCR指纹图谱中1.1kb主带中的DNA片段进行了克隆,测序,基因组定位以及引物匹配分析。结果表明,这条1.1kb主带由分布在基因组中不同位置的3种序列不同的片段组成,各片段的丰度差异较大,最高为97.89%;3种片段中的2种所在的基因组区域仅一端含有ERIC序列,推测对含有ERIC序列的基因组DNA进行扩增时,ERIC-PCR是一种非随机扩增。  相似文献   

18.
In this study, enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and randomly amplified polymorphic DNA PCR (RAPD-PCR) were optimized for characterization of Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. In addition, a simple and rapid DNA extraction method was tested for use in both typing procedures. Both methods had satisfactory typeability and discriminatory power, but the fingerprints generated with ERIC-PCR were more reproducible and complex than those obtained with RAPD-PCR. The use of nondiluted boiled cell suspensions as DNA templates was found to be very useful in ERIC-PCR. Characterization of large numbers of Arcobacter isolates is therefore preferably performed by the ERIC-PCR procedure. Isolates for which almost identical ERIC fingerprints are generated may subsequently be characterized by RAPD-PCR, although adjustment and standardization of the amount of the DNA template are necessary. In the second part of this study, the genotypic diversity of arcobacters present on broiler carcasses was assessed by using both typing methods. A total of 228 cultures from 24 samples were examined after direct isolation and enrichment. The isolates were identified by using a multiplex PCR as A. butzleri (n = 182) and A. cryaerophilus (n = 46). A total of 131 types (91 A. butzleri types and 40 A. cryaerophilus types) were discerned without discordance between the two typing techniques. The analysis of the poultry isolates showed that poultry products may harbor not only more than one species but also multiple genotypes. All genotypes were confined to one poultry sample, and only three genotypes were found after simultaneous enrichment and direct isolation. These results demonstrate that different outcomes can be obtained in epidemiological studies depending on the isolation procedure used and the number of isolates characterized.  相似文献   

19.
Enterobacter sakazakii is associated with neonatal infections and is occasionally present at low levels (<1 CFU/g) in powdered infant formula milk (IFM). It has been previously reported that some E. sakazakii strains do not grow in standard media for Enterobacteriaceae and coliform bacteria; therefore, a reliable method is needed for recovery of the organism. Three E. sakazakii enrichment broths—Enterobacteriaceae enrichment broth (EE), E. sakazakii selective broth (ESSB), and modified lauryl sulfate broth (mLST)—were compared with a novel broth designed for maximum recovery of E. sakazakii, E. sakazakii enrichment broth (ESE). One hundred seventy-seven strains (100%) grew in ESE, whereas between 2 and 6% of strains did not grow in EE, mLST, or ESSB. E. sakazakii possesses α-glucosidase activity, and a number of selective, chromogenic agars for E. sakazakii isolation based on this enzyme have been developed. E. sakazakii isolation agar produced fewer false-positive colonies than did Druggan-Forsythe-Iversen agar. However, the latter supported the growth of more E. sakazakii strains. It was also determined that 2% of E. sakazakii strains did not produce yellow pigmentation on tryptone soya agar at 25°C, a characteristic frequently cited in the identification of E. sakazakii. The recovery of desiccated E. sakazakii (0.2 to 2000 CFU/25 g) from powdered IFM in the presence of a competing flora was determined with various enrichment broths and differential selective media. Current media designed for the isolation and presumptive identification of E. sakazakii do not support the growth of all currently known E. sakazakii phenotypes; therefore, improvements in the proposed methods are desirable.  相似文献   

20.
Polymerase chain reaction (PCR) amplification of total DNA was evaluated as a method to distinguish Xanthomonas campestris pv. pelargonii from other pathovars within this species. Two sets of highly conserved enterobacterial consensus sequences were used as targets for PCR amplification: (a) enterobacterial repetitive intergenic consensus [ERIC] and (b) repetitive extragenic palindromic [REP] sequences. Nucleic acid was extracted from a total of 37 isolates of bacteria: 19 isolates ofX campestris pv. pelargonii and 18 isolates representing 10 other pathovars of X. campestris. After PCR amplification using the ERIC primer pair the DNA fingerprints of X. campestris pv, pelargonii contained two major DNA products (estimated size 500 and 740 pp) that were conserved among all 19 isolates. With the REP primer pair, the fingerprints were more complex and major DNA products ranging from -690 to 1650 bp were detected. Using information from both ERIC- and REP-primed Imgerprints, the X. campestris pv. pelargonii fingerprints were distinguishable from the fingerprints of the other pathovars examined: pvs. citrumelo. citri, beganiae, vittans B and C. phaseoli. campestris, manihotis, juglandis, carotae and pruni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号