首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusarium roseum culmorum, grown on apple cutin as the sole source of carbon, was shown to produce a cutin depolymerizing enzyme. From the extracellular fluid of these F. roseum cultures, a cutinase and a nonspecific esterase were isolated utilizing Sephadex G-100, QAE-Sephadex, and SP-Sephadex chromatography. The homogeneity of the cutinase was verified by polyacrylamide disc gel electrophoresis. The molecular weight of the cutinase was estimated to be 24,300 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Electrophoretic mobility of this enzyme was between that of Cutinases I and II from Fusarium solani pisi. The F. roseum cutinase hydrolyzed p-nitrophenyl butyrate and cutin, but not p-nitrophenyl palmitate, while the nonspecific esterase hydrolyzed the long-chain esters. Amino acid composition of F. roseum cutinase was found to be similar to that of F. solani pisi Cutinase I except for differences in the number of serine, valine, and cysteine residues. The time-course, protein concentration dependence, substrate concentration dependence, and pH optimum (10.0 for cutin hydrolysis) of the F. roseum cutinase was similar to the cutinases from F. solani pisi. The F. roseum cutinase was inhibited by diisopropylfluorophosphate and paraoxon, and the [3H]diisopropylphosphate group was covalently attached to the enzyme upon treatment with tritiated diisopropylfluorophosphate. Therefore, it is concluded that catalysis by cutinase involves an “active serine.” Immunochemical studies with a rabbit antibody prepared against F. solani pisi Cutinase I demonstrated that Cutinase II from this organism was immunologically very similar to, but not identical to, Cutinase I. On the other hand, the cutinase from F. roseum was immunologically quite different from the cutinases isolated from F. solani pisi in that it did not cross-react with anticutinase I. However, all three cutinases were virtually identical in their sensitivity to inhibition by anticutinase I, and all three enzymes were virtually completely inhibited by the anticutinase I.  相似文献   

2.
Bacterial cutinases are promising catalysts for the modification and degradation of the widely used plastic polyethylene terephthalate (PET). The improvement of the enzyme for industrial purposes is limited due to the lack of structural information for cutinases of bacterial origin. We have crystallized and structurally characterized a cutinase from Thermobifida fusca KW3 (TfCut2) in free as well as in inhibitor-bound form. Together with our analysis of the thermal stability and modelling studies, we suggest possible reasons for the outstanding thermostability in comparison to the less thermostable homolog from Thermobifida alba AHK119 and propose a model for the binding of the enzyme towards its polymeric substrate. The TfCut2 structure is the basis for the rational design of catalytically more efficient enzyme variants for the hydrolysis of PET and other synthetic polyesters.  相似文献   

3.
The genes ACUT1, ACUT2, and ACUT3, encoding cutinases, were selected from the genomic DNA of Arxula adeninivorans LS3. The alignment of the amino acid sequences of these cutinases with those of other cutinases or cutinase-like enzymes from different fungi showed that they all had a catalytic S-D-H triad with a conserved G-Y-S-Q-G domain. All three genes were overexpressed in A. adeninivorans using the strong constitutive TEF1 promoter. Recombinant 6× His (6h)-tagged cutinase 1 protein (p) from A. adeninivorans LS3 (Acut1-6hp), Acut2-6hp, and Acut3-6hp were produced and purified by immobilized-metal ion affinity chromatography and biochemically characterized using p-nitrophenyl butyrate as the substrate for standard activity tests. All three enzymes from A. adeninivorans were active from pH 4.5 to 6.5 and from 20 to 30°C. They were shown to be unstable under optimal reaction conditions but could be stabilized using organic solvents, such as polyethylene glycol 200 (PEG 200), isopropanol, ethanol, or acetone. PEG 200 (50%, vol/vol) was found to be the best stabilizing agent for all of the cutinases, and acetone greatly increased the half-life and enzyme activity (up to 300% for Acut3-6hp). The substrate spectra for Acut1-6hp, Acut2-6hp, and Acut3-6hp were quite similar, with the highest activity being for short-chain fatty acid esters of p-nitrophenol and glycerol. Additionally, they were found to have polycaprolactone degradation activity and cutinolytic activity against cutin from apple peel. The activity was compared with that of the 6× His-tagged cutinase from Fusarium solani f. sp. pisi (FsCut-6hp), also expressed in A. adeninivorans, as a positive control. A fed-batch cultivation of the best Acut2-6hp-producing strain, A. adeninivorans G1212/YRC102-ACUT2-6H, was performed and showed that very high activities of 1,064 U ml−1 could be achieved even with a nonoptimized cultivation procedure.  相似文献   

4.
Cutinase, which exists in both fungi and bacteria, catalyzes the cleavage of the ester bonds of cutin. Fungal cutinases have been extensively studied, however, reports on bacterial cutinases have been limited due to the lack of knowledge concerning the identity of their open reading frames. In the present study, the cutinase from Thermobifida fusca was induced by cutin and purified to homogeneity by following p-nitrophenyl butyrate hydrolyzing activity. Peptide mass fingerprinting analysis of the wild-type enzyme matched two proteins, Tfu_0883 and Tfu_0882, which are 93% identical in sequence. Both proteins were cloned and overexpressed in their mature form. Recombinant Tfu_0883 and Tfu_0882 display very similar enzymatic properties and were confirmed to be cutinases by their capability to hydrolyze the ester bonds of cutin. Comparative characterization of Fusarium solani pisi and T. fusca cutinases indicated that they have similar substrate specificity and catalytic properties except that the T. fusca enzymes are thermally more stable. Homology modeling revealed that T. fusca cutinases adopt an alpha/beta-hydrolase fold that exhibits both similarities and variations from the fungal cutinase structure. A serine hydrolase catalytic mechanism involving a Ser(170)-His(248)-Asp(216) (Tfu_0883 numbering) catalytic triad was supported by active site-directed inhibition studies and mutational analyses. This is the first report of cutinase encoding genes from bacterial sources.  相似文献   

5.
6.
Several cutinase variants derived by molecular modelling and site-directed mutagenesis of a cutinase gene from Fusarium solani pisi are poorly secreted by Saccharomyces cerevisiae. The majority of these variants are successfully produced by the filamentous fungus Aspergillus awamori. However, the L51S and T179Y mutations caused reductions in the levels of extracellular production of two cutinase variants by A. awamori. Metabolic labelling studies were performed to analyze the bottleneck in enzyme production by the fungus in detail. These studies showed that because of the single L51S substitution, rapid extracellular degradation of cutinase occurred. The T179Y substitution did not result in enhanced sensitivity towards extracellular proteases. Presumably, the delay in the extracellular accumulation of this cutinase variant is caused by the enhanced hydrophobicity of the molecule. Overexpression of the A. awamori gene encoding the chaperone BiP in the cutinase-producing A. awamori strains had no significant effect on the secretion efficiency of the cutinases. A cutinase variant with the amino acid changes G28A, A85F, V184I, A185L, and L189F that was known to aggregate in the endoplasmic reticulum of S. cerevisiae, resulting in low extracellular protein levels, was successfully produced by A. awamori. An initial bottleneck in secretion occurred before or during translocation into the endoplasmic reticulum but was rapidly overcome by the fungus.  相似文献   

7.
Cutinase from pollen grains of Tropaeolum majus was purified by Sephadex G-100 gel filtration, QAE-Sephadex chromatography, and isoelectric focusing. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the enzyme was estimated to be 40,000 by both Sephadex G-100 gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This cutinase was found to be a glycoprotein containing about 7% carbohydrate and the isoelectric point of this enzyme was 5.45. It catalyzed hydrolysis of p-nitrophenyl esters of C2 to C18 fatty acids with similar Km and V. The purified cutinase showed an optimum pH of 6.8 with cutin as the substrate, whereas with p-nitrophenyl esters of fatty acids the optimum pH was 8.0. This enzyme did not show any metal ion requirement. Unlike the previously studied fungal cutinases, the present pollen enzyme was strongly inhibited by thiol-directed reagents such as N-ethylmaleimide and p-hydroxymercuribenzoate whereas it was totally insensitive to the active serine-directed reagent, diisopropylfluorophosphate. The purified pollen cutinase showed preference for primary alcohol esters, but it did not catalyze hydrolysis of tripalmitoyl or trioleyl glycerol at significant rates. The properties of the pollen enzyme are, in general, in sharp contrast to those of the fungal cutinase, and the present results strongly suggest that the pollen enzyme belongs to a new class of cutinases. Another esterase which preferentially hydrolyzed p-nitrophenyl acetate was also found in the extracellular fluid. This enzyme, separated from cutinase, showed a pI of 5.6 and it was sensitive to diisopropylfluorophosphate, but not to SH-directed reagents.  相似文献   

8.
The present results demonstrate that the catalytic characteristics of cutinase produced by the same strain differ depending on the culture medium used. This conclusion was possible after the study of biochemical characterization and enantioselective properties of cutinases produced by Fusarium oxysporum in four different culture mediums. The mediums were composed of wheat bran, soybean rind, rice bran and Jatropha curcas seed cake, different Brazilian agricultural by-products. The largest difference can be observed on cutinase produced by J. curcas seed cake. This enzyme has been activated in most metal ions tested and exhibited excellent stability in organic solvent, especially hexane. The cutinase produced in rice bran showed greatest activity in the presence of p-nitrophenyl butyrate as a substrate, whereas the other enzymes showed greatest activity in the presence of p-nitrophenyl caprilate. Regarding enantioselective properties the cutinase produced in soybean rind showed the best result compared to enzymes produced in wheat bran.  相似文献   

9.
This study focuses on the different efficiencies of secretion of two fungal cutinases by Saccharomyces cerevisiae, a wild-type cutinase (CY000) and a hydrophobic mutant cutinase (CY028). Both cutinases are placed under control of the GAL7 promoter, by which the expression levels can be regulated. Wild-type cutinase was secreted at up to 25 mg per g (dry weight), while CY028 was secreted at a level of 2 mg per g (dry weight); this difference is nearly independent of the expression level. Pulse-chase experiments revealed that whereas CY000 cutinase is secreted, CY028 is irreversibly retained in the cell. Immunogold labelling followed by electron microscopy revealed colocalization of CY028 with immunoglobulin heavy-chain binding protein (BiP) in the endoplasmic reticulum (ER). The increase of wild-type cutinase expression did not result in higher levels of the molecular chaperone BiP, but BiP levels are raised by increased induction of the hydrophobic mutant cutinase. Immunoprecipitation studies showed that in contrast to the wild-type cutinase, the hydrophobic mutant cutinase interacts with BiP. These results indicate that the introduction of two exposed hydrophobic patches in cutinase results in a higher affinity for BiP which might cause the retention of this mutant cutinase in the ER.  相似文献   

10.
Cutinases belong to the α/β-hydrolase fold family of enzymes and degrade cutin and various esters, including triglycerides, phospholipids and galactolipids. Cutinases are able to degrade aggregated and soluble substrates because, in contrast with true lipases, they do not have a lid covering their catalytic machinery. We report here the structure of a cutinase from the fungus Trichoderma reesei (Tr) in native and inhibitor-bound conformations, along with its enzymatic characterization. A rare characteristic of Tr cutinase is its optimal activity at acidic pH. Furthermore, Tr cutinase, in contrast with classical cutinases, possesses a lid covering its active site and requires the presence of detergents for activity. In addition to the presence of the lid, the core of the Tr enzyme is very similar to other cutinase cores, with a central five-stranded β-sheet covered by helices on either side. The catalytic residues form a catalytic triad involving Ser164, His229 and Asp216 that is covered by the two N-terminal helices, which form the lid. This lid opens in the presence of surfactants, such as β-octylglucoside, and uncovers the catalytic crevice, allowing a C11Y4 phosphonate inhibitor to bind to the catalytic serine. Taken together, these results reveal Tr cutinase to be a member of a new group of lipolytic enzymes resembling cutinases but with kinetic and structural features of true lipases and a heightened specificity for long-chain triglycerides.  相似文献   

11.
Cutinases comprise a family of esterases with broad hydrolytic activity for chain and pendant ester groups. This work aimed to identify and improve an efficient cutinase for cellulose acetate (CA) deacetylation. The development of a mild method for CA fiber surface deacetylation will result in improved surface hydrophilicity and reactivity while, when combined with cellulases, a route to the full recycling of CA to acetate and glucose. In this study, the comparative CA deacetylation activity of four homologous wild‐type (wt) fungal cutinases from Aspergillus oryzae (AoC), Thiellavia terrestris (TtC), Fusarium solani (FsC), and Humicola insolens (HiC) was determined by analysis of CA deacetylation kinetics. wt‐HiC had the highest catalytic efficiency (≈32 [cm2 L‐1]‐1 h‐1). Comparison of wt‐cutinase catalytic constants revealed that differences in catalytic efficiency are primarily due to corresponding variations in corresponding substrate binding constants. Docking studies with model tetrameric substrates also revealed structural origins for differential substrate binding amongst these cutinases. Comparative docking studies of HiC point mutations led to the identification of two important rationales for engineering cutinases for CA deacetylation: (i) create a tight but not too closed binding groove, (ii) allow for hydrogen bonding in the extended region around the active site. Rationally designed HiC with amino acid substitutions I36S, predicted to hydrogen bond to CA, combined with F70A, predicted to remove steric constraints, showed a two‐fold improvement in catalytic efficiency. Continued cutinase optimization guided by a detailed understanding of structure‐activity relationships, as demonstrated here, will be an important tool to developing practical cutinases for commercial green chemistry technologies.  相似文献   

12.
Surface-penetrating phytopathogenic fungi frequently form appressoria. These are specialised infection structures pivotal to fungal ingress into the host. Recently, we demonstrated that one member of a family of cutinases in Magnaporthe grisea is involved in surface sensing, mediating appressorium differentiation and penetration peg formation and hence facilitates host penetration. Cutinase2 serves as an upstream activator of cAMP/PKA and DAG/PKC signalling cascades and is essential for full virulence. Here, we speculate on the role of rice blast hydrophobins as surface interactors facilitating fungal cutinase activity.Key words: rice blast fungus, appressorium, cutinase, hydrophobin, penetration, surface sensing, signalling  相似文献   

13.
14.
The interaction of lipolytic enzymes with anionic surfactants is of great interest with respect to industrially produced detergents. Here, we report the interaction of cutinase from the thermophilic fungus Humicola insolens with the anionic surfactant SDS, and show the enzyme specifically binds a single SDS molecule under nondenaturing concentrations. Protein interaction with SDS was investigated by NMR, ITC and molecular dynamics simulations. The NMR resonances of the protein were assigned, with large stretches of the protein molecule not showing any detectable resonances. SDS is shown to specifically interact with the loops surrounding the catalytic triad with medium affinity (Ka ≈ 105 M−1). The mode of binding is closely similar to that seen previously for binding of amphiphilic molecules and substrate analogues to cutinases, and hence SDS acts as a substrate mimic. In addition, the structure of the enzyme has been solved by X-ray crystallography in its apo form and after cocrystallization with diethyl p-nitrophenyl phosphate (DNPP) leading to a complex with monoethylphosphate (MEP) esterified to the catalytically active serine. The enzyme has the same fold as reported for other cutinases but, unexpectedly, esterification of the active site serine is accompanied by the ethylation of the active site histidine which flips out from its usual position in the triad.  相似文献   

15.
Germinating nasturtium pollen (Tropaeolum majus) is shown to excrete an enzyme(s) which hydrolyzes all types of monomers from biosynthetically labeled cutin and p-nitrophenyl esters, which are model substrates for fungal cutinases. The pollen cutinase showed an optimum pH near 6.5 and was inhibited by thiol-directed reagents such as p-hydroxymercuribenzoate and N-ethyl maleimide but not by diisopropyl-fluorophosphate, an “active serine”-directed reagent indicating that the pollen enzyme is an “-SH cutinase” unlike the fungal enzyme which is a serine cutinase. Excretion of the pollen cutinase into the extracellular fluid was complete within 4 to 6 hours at 30 C. Since actinomycin D and cycloheximide showed little effect on the level of cutinase excreted, it appears that cutinase is an enzyme synthesized prior to germination. Release of cutinase into the medium did not require germination. Electron microscopy revealed the presence of a continuous cutin layer on mature stigma with extensive folds, which are proposed to play a role similar to that played by the cellular papillae found in the stigma of other plants. Chemical analysis of stigma cutin by depolymerization and combined gas-liquid chromatography and mass spectrometry showed that this cutin consists of mainly the C16 family of acids. The major (70%) components were dihydroxy C16 acids which consisted of 10,16- (64%), 9,16- (16%), 8,16- (12%), and 7,16- (8%) dihydroxy plamitic acid. Deuterium-labeling studies showed the presence of 16-oxo-9-hydroxy C16 acid and 16-oxo-10-hydroxy C16 acid in this cutin. The biochemical and ultrastructural studies indicate that the pollen tube may gain entry into stigma using cutinase excreted by the pollen.  相似文献   

16.
Cutinase: from molecular level to bioprocess development   总被引:9,自引:0,他引:9  
This review analyzes the role of cutinases in nature and their potential biotechnological applications. The cloning and expression of a fungal cutinase, Fusarium solani f. pisi, in Escherichia coli and Saccharomyces cerevisiae hosts are described. The three-dimensional structure of this cutinase is also analyzed and its function as a lipase is discussed and compared with other lipases. The biocatalytic applications of cutinase are described taking into account the preparation of different cutinase forms and the media in which the different types of reactions have been performed, namely hydrolysis, esterification, transesterification, and resolution of racemic mixtures. The stability of cutinase preparations is discussed and, in particular, the cutinase stability in anionic reversed micelles is analyzed considering the role of hexanol as a substrate, a cosurfactant, and a stabilizer. Process development, based on the operation of cutinase reactors, is also reviewed.  相似文献   

17.
Summary A Fusarium solani pisi recombinant cutinase solubilized in phosphatidylcholine/isooctane reversed micelles was used to catalyse the esterification reaction of butyric acid with 2-butanol at pH 10.7. The influence of temperature, Wo and substrates on lipase stability was evaluated. The enzyme displays a better stability, with a half-life over 125 days, at a temperature of 22°C and for a low water content (WO= 6.5). Butyric acid increased the cutinase deactivation (t1/2=0.56h), while 2-butanol led to a similar half-life (t1/2=14h) as without substrate.  相似文献   

18.
R E Purdy  P E Kolattukudy 《Biochemistry》1975,14(13):2832-2840
The properties of the homogeneous cutinase I, cutinase II, and the nonspecific esterase isolated from the extracellular fluid of cutin-grown Fusarium solani F. pisi (R.E. Purdy and P.E. Kolattukudy (1975), Biochemistry, preceding paper in this issue) were investigated. Using tritiated apple cutin as substrate, the two cutinases showed similar substrate concentration dependence, protein concentration dependence, time course profiles, and pH dependence profiles with optimum near 10.0. Using unlabeled cutin, the rate of dihydroxyhexadecanoic acid release from apple fruit cutin by cutinase I was determined to be 4.4 mumol per min per mg. The cutinases hydrolyzed methyl hexadecanoate, cyclohexyl hexadecanoate, and to a much lesser extent hexadecyl hexadecanoate but not 9-hexadecanoyloxyheptadecane, cholesteryl hexadecanoate, or hexadecyl cinnamate. The extent of hydrolysis of these model substrates by cutinase I was at least three times that by cutinase II. The nonspecific esterase hydrolyzed all of the above esters except hexadecyl cinnamate, and did so to a much greater extent than did the cutinases. None of the enzymes hydrolyzed alpha- or beta-glucosides of p-nitrophenol. p-Nitrophenyl esters of fatty acids from C2 through C18 were used as substrates and V's and Kms were determined...  相似文献   

19.
Cutinase is a multifunctional esterase with potential industrial applications. In the present study, a truncated version of the extracellular Thermobifida fusca cutinase without a signal peptide (referred to as cutinaseNS) was heterologously expressed in Escherichia coli BL21(DE3). The results showed that the majority of the cutinase activity was located in the culture medium. In a 3-liter fermentor, the cutinase activity in the culture medium reached 1,063.5 U/ml (2,380.8 mg/liter), and the productivity was 40.9 U/ml/h. Biochemical characterization of the purified cutinaseNS showed that it has enzymatic properties similar to those of the wild-type enzyme. In addition, E. coli cells producing inactive cutinaseNSS130A were constructed, and it was found that the majority of the inactive enzyme was located in the cytoplasm. Furthermore, T. fusca cutinase was confirmed to have hydrolytic activity toward phospholipids, an important component of the cell membrane. Compared to the cells expressing the inactive cutinaseNSS130A, the cells expressing cutinaseNS showed increased membrane permeability and irregular morphology. Based on these results, a hypothesis of “cell leakage induced by the limited phospholipid hydrolysis of cutinaseNS” was proposed to explain the underlying mechanism for the extracellular release of cutinaseNS.  相似文献   

20.
Cutinase from Thermobifida fusca is thermally stable and has potential application in the bioscouring of cotton in the textile industry. In the present study, the carbohydrate-binding modules (CBMs) from T. fusca cellulase Cel6A (CBMCel6A) and Cellulomonas fimi cellulase CenA (CBMCenA) were fused, separately, to the carboxyl terminus of T. fusca cutinase. Both fusion enzymes, cutinase-CBMCel6A and cutinase-CBMCenA, were expressed in Escherichia coli and purified to homogeneity. Enzyme characterization showed that both displayed similar catalytic properties and pH stabilities in response to T. fusca cutinase. In addition, both fusion proteins displayed an activity half-life of 53 h at their optimal temperature of 50°C. Compared to T. fusca cutinase, in the absence of pectinase, the binding activity on cotton fiber was enhanced by 2% for cutinase-CBMCel6A and by 28% for cutinase-CBMCenA, whereas in the presence of pectinase, the binding activity was enhanced by 40% for the former and 45% for the latter. Notably, a dramatic increase of up to 3-fold was observed in the amount of released fatty acids from cotton fiber by both cutinase-CBM fusion proteins when acting in concert with pectinase. This is the first report of improving the scouring efficiency of cutinase by fusing it with CBM. The improvement in activity and the strong synergistic effect between the fusion proteins and pectinase suggest that they may have better applications in textile bioscouring than the native cutinase.Cotton fiber has a multilayered structure, with its outermost surface being the cuticle that is cross-linked to the primary cell wall of cotton fiber by esterified pectin substances. The major component of the cuticle is cutin, an insoluble polyester composed mainly of saturated C16 and C18 hydroxy and epoxy fatty acids (14, 16, 27, 38). During the process of scouring in the textile industry, the cuticle layer has to be removed in order to improve the wettability of cotton fiber, which then facilitates uniform dyeing and finishing. Traditionally, this process is performed by hot hydrolysis in alkaline medium, which not only consumes large quantities of water and energy but also causes severe pollution and fiber damage (20, 21, 33). Therefore, environment-friendly scouring methods based on biocatalysts have been actively sought (2, 30, 36).Cutinase is a multifunctional esterase capable of degrading the cutin component of the cuticle. Earlier reports showed that the fungal cutinase from Fusarium solani pisi has potential use for cotton cuticle degradation and exhibits a good synergistic effect with pectinase, an enzyme utilized to degrade pectin, in the scouring of cotton fiber (1, 7, 8, 14). Moreover, site-directed mutagenesis has been performed to replace the specific amino acid residues near the active site of cutinase (3) to improve its hydrolytic activity toward polyesters. More recently, a cutinase from the thermophilic bacterium Thermobifida fusca has been identified and overexpressed in Escherichia coli in our laboratory (10). The good thermal stability and alkali resistance of this recombinant T. fusca cutinase make it potentially more amenable to textile bioscouring (10).To further improve the applicability and/or catalytic efficiency of T. fusca cutinase, the present study attempts to engineer a novel cutin-degrading enzyme, based on analysis of the surface structure of cotton fiber. It has been observed that, in addition to cutin, pectin, proteins and other components, there is also a large amount of cellulose on the surface layer of cotton fiber (23). Thus, it is tempting to hypothesize that if the enzyme can be engineered to specifically bind to cellulose through a “gain of function” modification, its concentration on the surface of cotton fiber could increase significantly. Subsequently, its catalytic efficiency for cutin breakdown could be improved due to a proximity effect. In order to design such an enzyme, a fusion protein strategy in which a cellulose-binding protein/module will be attached to cutinase is considered.It is well known that cellulase is capable of binding specifically to cellulose (25, 31). This enzyme has two separate modules: a catalytic module and a carbohydrate-binding module (CBM) (11). The two modules are discrete structural and functional units usually connected by a flexible linker (5, 17, 28). CBM has high specific capacities for cellulose binding. Previously, it has been reported that CBM is able to be fused to a chosen target protein by genetic manipulation (36), resulting in enhanced binding of this fusion protein to cellulose (6, 29). For example, fusion proteins were constructed by fusing CBM to β-glucose nucleotide enzyme (GUS) (13) or β-glycosidase (BglA) (19), which facilitates biochemical analysis of scouring efficiency for cotton fabrics.In the present study, the CBM from T. fusca cellulase Cel6A (CBMCel6A) and the CBM from Cellulomonas fimi cellulase CenA (CBMCenA) were fused, separately, to the carboxyl terminus of T. fusca cutinase. The resulting fusion enzymes were compared to the native cutinase in terms of their biochemical properties, as well as the catalytic efficiency in cutin breakdown on cotton fiber. This is the first report of improving the scouring efficiency of cutinase by fusing it with CBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号