首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the evolutionary positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia, we obtained 18S rRNA sequences from 11 new taxa representing the major living orders and families of gymnosperms. With the published Chlamydomonas as an outgroup, phylogenetic analyses of our new data and available sequences indicate that (1) the Gnetales form a monophyletic group, which is an outgroup to the conifers, (2) the conifers are monophyletic, (3) Taxaceae, Cephalotaxaceae, Cupressaceae, and Taxodiaceae form a monophyletic group, (4) Amentotaxus is closer to Torreya than to Cephalotaxus, suggesting that Amentotaxus is better to be classified as a member of Taxaceae, (5) Phyllocladus, Dacrycarpus, Podocarpus, and Nageia form a monophyletic group, and (6) Pinaceae is an outgroup to the other families of conifers. Our finding that Phyllocladus is a sister group of the Podocarpaceae disagrees with the suggestion that the phylloclade of the genus is an ancient structure and that the genus is a terminal taxon within the Podocarpaceae. The genus Nageia is more closely related to Podocarpus than to Dacrycarpus and was derived from within the Podocarpaceae. In conclusion, our data indicate that in conifers, the uniovulate cone occurred independently in Taxacaeae and Cephalotaxaceae, and in Podocarpaceae after the three families separated from Pinaceae, and support the hypothesis that the uniovulate cone is derived from reduction of a multiovulate cone.Correspondence to: S.-M. Chaw  相似文献   

2.
The evolutionary position of the yew family, Taxaceae, has been very controversial. Some plant taxonomists strongly advocate excluding Taxaceae from the conifer order and raising its taxonomic status to a new order or even class because of its absence of seed cones, contrary to the case in the majority of conifers. However, other authors believe that the Taxaceae are not fundamentally different from the rest of the conifers except in that they possess the most reduced solitary-ovule cones. To resolve the controversy, we have sequenced the 18S rRNA genes from representative gymnosperms: Taxus mairei (Taxaceae), Podocarpus nakaii (Podocarpaceae), Pinus luchuensis (Pinaceae), and Ginkgo biloba (Ginkgoales). Our phylogenetic analysis of the new sequence data with the published 18S rRNA sequence of Zamia pumila (a cycad) as an outgroup strongly indicates that Taxus, Pinus, and Podocarpus form a monophyletic group with the exclusion of Ginkgo and that Taxus is more closely related to Pinus than to Podocarpus. Therefore, Taxaceae should be classified as a family of Coniferales. Our finding that Taxaceae, Pinaceae, and Podocarpaceae form a clade contradicts both the view that the uniovulate seed of Taxaceae is a primitive character and the view that the Taxaceae are descendants of the Podocarpaceae. Rather, the uniovulate seed of Taxaceae and that of some species of Podocarpus appear to have different origins, probably all reduced from multiovulate cones. Correspondence to: W.-H. Li  相似文献   

3.
A cladistic analysis was performed using nucleotide sequence variation in therps16 intron and thetrmL-F region (plastid DNA).Arcytophyllum belongs in a subclade of the tribe Spermacoceae (s.l.) together with the American species presently classified in the generaHedyotis andHoustonia. This subclade is morphologically characterized by cymbiform seeds.Arcytophyllum is the sister group of all AmericanHedyotis andHoustonia and it is suggeste that these latter would be most conveniently treated as a single genus, the correct name of which would beHoustonia.Arcytophyllum should be circumscribed such that it excludesA. serpyllaceum, which is not a member of theArcytophyllum-Houstonia clade but more closely related toBouvardia. The phylogeny that was reconstructed suggests that the ancestral area of theArcytophyllum-Houstonia clade is the South American tectonic plate.  相似文献   

4.
Changes in three pollen grain characters: number of sacci, infrastructure of sacci, and number and position of apertures, are considered against a phylogenetic background of cordaites and early conifers reconstructed on the basis of female fructifications. Bisaccate pollen grains with double germination developed most probably independently in Majonicaceae and Voltziaceae, whereas the most primitive conifers produced monosaccate prepollen with a single proximal aperture. Another lineage resulting in true pollen with a single distal aperture can be observed within cordaites. The development of saccus infrastructure among early pinopsids was directed from eusaccus to protosaccus rather than vice versa. In any case, the eusaccus of modern conifers is not homologous to that of cordaites and its origin is to be elucidated. The pollen characters suggest a very early separation of conifers from cordaites, approximately simultaneous with the division of cordaites into three families.  相似文献   

5.
Phylogenetic relationships within the tribe Antirrhineae (Scrophulariaceae) are analysed and discussed on the basis of parsimony analyses of morphological andndhF gene sequence data. The results indicate that the tribe Antirrhineae consists of four major groups of genera, theAnarrhinum clade, theGambelia clade, theMaurandya clade, and theAntirrhinum clade. TheAnarrhinum clade, consisting of the Old World bee-pollinated generaAnarrhinum andKickxia, is sister to the rest of the tribe. TheGambelia clade consists of the New World generaGambelia andGalvezia, which are very closely related and pollinated by hummingbirds. TheMaurandya clade consists of one subclade includingMaurandya and a number of related bee- or hummingbird-pollinated New World genera and another subclade with the Old World bee-pollinated generaAsarina andCymbalaria. TheAntirrhinum clade consists mainly of bee-pollinated Old World genera, such asAntirrhinum, Linaria, Chaenorhinum, and their segregates, but also includes the New World generaMohavea andHowelliella, of which the latter is known to be partly pollinated by hummingbirds. It is concluded that hummingbirdpollination has evolved independently within Antirrhineae at least three times from bee-pollinated ancestors.  相似文献   

6.
Phylogeny of the Taxaceae genera and the monotypic family Cephalotaxaceae has been extraordinarily controversial. In this paper chloroplast matK genes and nuclear ITS sequences were determined for all six genera of the two families and representatives of other conifer families. Analysis using either the nonsynonymous sites or the deduced amino acid sequences of matK genes strongly indicates that taxad genera and Cephalotaxaceae are monophyletic, with the Taxodiaceae/Cupressaceae clade as their sister group. Cephalotaxus is basal to the taxad genera, among which two clades, Torreya/Amentotaxus and Taxus/Pseudotaxus/Austrotaxus, are resolved. They correspond to Janchen's two tribes, Torreyeae and Taxeae. In Taxeae, Austrotaxus is the first to branch off. Analyses of the nuclear ITS sequence data corroborated the topology of the matK gene tree. These results refute the views that Cephalotaxaceae has no alliance with Taxaceae and that Austrotaxus and Amentotaxus should be excluded from the Taxaceae. We estimated the divergence time between the Taxodiaceae/Cupressaceae and the Cephalotaxaceae/Taxaceae clades to be 192–230 Myr ago and the divergence time between taxads and Cephalotaxus to be 149–179 Myr ago. Soon after the latter divergence event, within 6–8 Myr, the two taxad tribes originated. In conclusion, our data do not support Florin's claim that taxads could be traced to Devonian psilophytes (359–395 Myr ago).  相似文献   

7.
A parsimony analysis of DNA sequences of the chloroplast-encoded generbcL from twelve members of theAcanthaceae s.l., including members of the sometimes segregateThunbergioideae andNelsonioideae, and other families in theBignoniales sensuThorne (1992) is presented. The results largely agree with the classification of theAcanthaceae presented byBremekamp (1965) andThorne (1992) and supportNelsonioideae as a sister group to the rest of theAcanthaceae. Thunbergioideae are placed as a sister toAcanthaceae s.str.Acanthus andAphelandra, both representatives ofAcanthoideae, form a sister group toRuellioideae. An analysis of branch support found that many branches throughout theBignoniales are weakly upheld. This points to the need for further studies in the group using more sequences ofrbcL as well as other data. None of the families ofBignoniales as presently circumscribed (includingAcanthaceae s.l.) were strongly supported, although the larger clade containing the families of theBignoniales was robust.  相似文献   

8.
A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm. Thirty complementary DNA and two genomic DNA probes from loblolly pine were hybridized to Southern blots containing DNA from five species of Pinus (P. elliottii, P. lambertiana, P. radiata, P. sylvestris, and P. taeda), one species from each of four other genera of Pinaceae (Abies concolor, Larix laricina, Picea abies, and Pseudotsuga menziesii), one species from each of three other families of Coniferales [Sequoia sempervirens (Taxodiaceae), Torreya californica (Taxaceae) and Calocedrus decurrens (Cupressaceae)], and to one angiosperm species (Populus nigra). Results showed that mapped DNA probes from lobolly pine will cross-hybridize to genomic DNA of other species of Pinus and some other genera of the Pinaceae. Only a small proportion of the probes hybridized to genomic DNA from three other families of the Coniferales and the one angiosperm examined. This study demonstrates that mapped DNA probes from loblolly pine can be used to construct RFLP maps for related species, thus enabling the opportunity for comparative genome mapping in conifers.  相似文献   

9.
The conifers, which traditionally comprise seven families, are the largest and most diverse group of living gymnosperms. Efforts to systematize this diversity without a cladistic phylogenetic framework have often resulted in the segregation of certain genera and/or families from the conifers. In order to understand better the relationships between the families, we performed cladistic analyses using a new data set obtained from 28S rRNA gene sequences. These analyses strongly support the monophyly of conifers including Taxaceae. Within the conifers, the Pinaceae are the first to diverge, being the sister group of the rest of conifers. A recently discovered Australian genus Wollemia is confirmed to be a natural member of the Araucariaceae. The Taxaceae are nested within the conifer clade, being the most closely related to the Cephalotaxaceae. The Taxodiaceae and Cupressaceae together form a monophyletic group. Sciadopitys should be considered as constituting a separate family. These relationships are consistent with previous cladistic analyses of morphological and molecular (18S rRNA, rbcL) data. Furthermore, the well-supported clade linking the Araucariaceae and Podocarpaceae, which has not been previously reported, suggests that the common ancestor of these families, both having the greatest diversity in the Southern Hemisphere, inhabited Gondwanaland.  相似文献   

10.
This paper reviews the non-dental morphological configuration of Miocene hominoids with special reference to the hypothesis of linear relationships between certain fossil species and living analogues. Metrical analysis of the wrist shows thatDryopithecus africanus andPliopithecus vindobonensis are unequivocally affiliated with the morphological pattern of quadrupedal monkeys. Similar analyses of the fossil hominoid elbow shows that they are more cercopithecoid-like than hominoid-like. Multivariate analysis of theP. vindobonensis shoulder in the matrix of extant Anthropoidea indicate that this putative hylobatine fossil shows no indication of even the initial development of hominoid features. The total morphological pattern of theD. africanus forelimb as assessed by principal coordinates analysis of allometrically adjusted shape variables has little resemblance toPan. Likewise, the feet and proximal femora of the Miocene fossils are unlike any living hominoid species. Even theD. africanus skull is similar to extant cercopithecoids in several features. Although ancestors cannot be expected to resemble descendants in every way, the striking dissimilarity between Miocene and extant hominoids seems to eliminate the consideration of a direct ancestor-descendant relationship between specific Miocene and modern forms.  相似文献   

11.
We investigated the molecular phylogeny of conifers using restriction endonuclease fragment length polymorphism of six polymerase chain reaction-amplified chloroplast genes — frxC, rbcL, psbA, psbD, trnK, and 16S. We detected 227 total site changes among species, representing 23, 26, 38, 48, 67, and 25 site changes in frxC, psbA, psbD, rbcL, trnK and 16S, respectively. The mean nucleotide substitution was 10.75% (SD 0.573) among species in five families. Forty maximally parsimonious trees were obtained using the Wagner parsimony method, and a 50% majority-rule consensus tree was obtained from them. Data analysis produced similar basic patterns when both the Wagner parsimony and the neighbor-joining methods were applied, and the main lineages were clearly separated. Taxaceae and Cephalotaxaceae species were used as the out-groups when applying Wagner parsimony methods. With the Wagner method, the consistency index was 0.510, the retention index was 0.879, and tree length was 435 steps. Our results indicated that Cupressaceae and Taxodiaceae are closely related families and that Sciadopitys verticillata is the basal lineage of Cupressaceae and Taxodiaceae. The neighbor-joining tree is similar to the 50% majority-rule consensus of the 40 Wagner parsimony trees except for the position of Keteleeria daversifolia, the Picea and Cedrus group, and the divergence within Cupressaceae.  相似文献   

12.
Features needing elucidation in Mesozoic Cycadales and Bennettitales are given and the Ginkgo—Czekanowskia assemblage is surveyed. Florin's interpretation of the conifer cone scale is discussed in relation to Schweizer's work on Pseudovoltzia. Taxus jurassica Florin is revised and shown to differ generically from Taxus but to share features seen among other Taxaceae: it thus helps to unify the family, but it does not relate the Taxaceae to ordinary conifers. A possible way is offered by which early conifers like Walchia could shift their ovules from a lateral to a terminal position and if this were acceptable, then the class Taxopsida would become unnecessary.  相似文献   

13.
In contemporary entomology the morphological characters of insects are not always treated according to their phylogenetic rank. Fossil evidence often gives clues for different interpretations. All primitive Paleozoic pterygote nymphs are now known to have had articulated, freely movable wings reinforced by tubular veins. This suggests that the wings of early Pterygota were engaged in flapping movements, that the immobilized, fixed, veinless wing pads of Recent nymphs have resulted from a later adaptation affecting only juveniles, and that the paranotal theory of wing origin is not valid. The wings of Paleozoic nymphs were curved backwards in Paleoptera and were flexed backwards at will in Neoptera, in both to reduce resistance during forward movement. Therefore, the fixed oblique-backwards position of wing pads in all modern nymphs is secondary and is not homologous in Paleoptera and Neoptera. Primitive Paleozoic nymphs had articulated and movable prothoracic wings which became in some modern insects transformed into prothoracic lobes and shields. The nine pairs of abdominal gillplates of Paleozoic mayfly nymphs have a venation pattern, position, and development comparable to that in thoracic wings, to which they are serially homologous. Vestigial equivalents of wings and legs were present in the abdomen of all primitive Paleoptera and primitive Neoptera. The ontogenetic development of Paleozoic nymphs was confluent, with many nymphal and subimaginal instars, and the metamorphic instar was missing. The metamorphic instar originated by the merging together of several instars of old nymphs; it occurred in most orders only after the Paleozoic, separately and in parallel in all modern major lineages (at least twice in Paleoptera, in Ephemeroptera and Odonata; separately in hemipteroid, blattoid, orthopteroid, and plecopteroid lineages of exopterygote Neoptera; and once only in Endopterygota). Endopterygota evolved from ametabolous, not from hemimetabolous, exopterygote Neoptera. The full primitive wing venation consists of six symmetrical pairs of veins; in each pair, the first branch is always convex and the second always concave; therefore costa, subcosta, radius, media, cubitus, and anal are all primitively composed of two separate branches. Each pair arises from a single veinal base formed from a sclerotized blood sinus. In the most primitive wings the circulatory system was as follows: the costa did not encircle the wing, the axillary cord was missing, and the blood pulsed in and out of each of the six primary, convex-concave vein pair systems through the six basal blood sinuses. This type of circulation is found as an archaic feature in modern mayflies. Wing corrugation first appeared in preflight wings, and hence is considered primitive for early (paleopterous) Pterygota. Somewhat leveled corrugation of the central wing veins is primitive for Neoptera. Leveled corrugation in some modern Ephemeroptera, as well as accentuated corrugation in higher Neoptera, are both derived characters. The wing tracheation of Recent Ephemeroptera is not fully homologous to that of other insects and represents a more primitive, segmental stage of tracheal system. Morphology of an ancient articular region in Palaeodictyoptera shows that the primitive pterygote wing hinge in its simplest form was straight and composed of two separate but adjoining morphological units: the tergal, formed by the tegula and axillaries; and the alar, formed by six sclerotized blood sinuses, the basivenales. The tergal sclerites were derived from the tergum as follows: the lateral part of the tergum became incised into five lobes; the prealare, suralare, median lobe, postmedian lobe and posterior notal wing process. From the tips of these lobes, five slanted tergal sclerites separated along the deep paranotal sulcus: the tegula, first axillary, second axillary, median sclerite, and third axillary. Primitively, all pteralia were arranged in two parallel series on both sides of the hinge. In Paleoptera, the series stayed more or less straight; in Neoptera, the series became V-shaped. Pteralia in Paleoptera and Neoptera have been homologized on the basis of the fossil record. A differential diagnosis between Paleoptera and Neoptera is given. Fossil evidence indicates that the major steps in evolution, which led to the origin first of Pterygota, then of Neoptera and Endopterygota, were triggered by the origin and the diversification of flight apparatus. It is believed here that all above mentioned major events in pterygote evolution occurred first in the immature stages.  相似文献   

14.
Recent investigations of ovulate conifer cones from southern Europe and midcontinent North America have independently documented that certain Paleozoic walchians have inverted ovules, rather than the erect ovules previously thought to characterize the most primitive conifers. Reinvestigation and consideration of other walchian conifers, including Moyliostrobus and Lebachia piniformis (sensu Florin), reveals that they also had inverted ovules. These different patterns of ovule orientation demonstrate that the nature and the polarity of the character states are dramatically different than popularly believed, and the shift from megasporophyll to ovuliferous cone-scale occurred within the Paleozoic walchians.  相似文献   

15.
The Ulmaceae is usually split into two subgroups, referred to as either tribes or more commonly subfamilies (Ulmoideae andCeltidoideae). The two groups are separated, with some exceptions, on the basis of leaf venation, fruit type, seed morphology, wood anatomy, palynology, chemistry, and chromosome number. Propositions to separate the two groups as distinct families have never gained general acceptance. Recent morphological and anatomical data have suggested, however, that not only is family status warranted but thatCeltidaceae are more closely related toMoraceae and otherUrticales than toUlmaceae. In order to test these alternative sets of relationships, restriction site mapping of the entire cpDNA was done with nine rare cutting enzymes using 11 genera ofUlmaceae s. l., three other families of theUrticales, and an outgroup family from theHamamelidae. Cladistic analysis of the data indicates thatUlmaceae s. l. is not monophyletic and that distinct families (Ulmaceae andCeltidaceae) are warranted; thatUlmaceae is the sister group toCeltidaceae plus all other families in the order; and thatCannabaceae might be nested withinCeltidaceae. Familial placements of various problematic genera (e.g.Ampelocera, Aphananthe) are resolved and character evolution of key morphological, anatomical, chemical, and chromosomal features are discussed.  相似文献   

16.
In the apparently “empty” axils of the needles of Taxus baccata, Sequoia sempervirens, Sequoiadendron giganteum, Cryptomeria japonica, Thuja occidentalis, and Thujopsis dolabrata persisting detached meristems were found, which are derived from superficial layers of the apical eumeristem. In T. baccata delayed development of minute axillary buds occurs from these meristems after 1–4 yr on the intact plant. In the other conifers, development of additional axillary buds from these meristems was induced by natural frost damage or by artificial pruning and disbudding. The discovery of these detached meristems is discussed with regard to the regenerative capacity of the conifers in comparison to other plants.  相似文献   

17.
Gymnosperms possess two to four phytochrome types which apparently are the result of successive gene duplications in the genomes of their common ancestors. Phytochromes are nuclear-encoded proteins whose genes, contrary to chloroplast, mitochondrion, and rRNA genes, have hitherto rarely been used to examine gymnosperm phylogenies. Since the individual phytochrome gene types implied phylogenies that were not completely congruent to one another, conflicting branching orders were sorted by the number of gene lineages present in a taxon. The Gnetatae (two gene types) branched at the base of all gymnosperms, a position supported by bootstrap sampling (distance and character state trees, maximum likelihood). The Gnetatae were followed by Ginkgo, Cycadatae, and Pinaceae (three gene types) and the remaining conifers (four gene types). Therefore, in phytochrome trees, the most ancient branch of the conifers (Pinatae) seems to be the Pinaceae. The next split appears to have separated Araucariaceae plus Podocarpaceae from the Taxaceae/Taxodiaceae/Cupressaceae group. Structural arrangements in the plastid genomes (Raubeson and Jansen 1992) corroborate the finding that there is no close connection between Pinaceae and Gnetatae as suggested by some publications. The analyses are based on 60 phytochrome genes (579 positions in an alignment of PCR fragments) from 28 species. According to rough divergence time estimates, the last common ancestor of gymnosperms and angiosperms is likely to have existed in the Carboniferous.  相似文献   

18.
19.
To analyse the status and phylogeny of the genusPhyllocladus,seedsof all seven species of the genus were studied. The complexof features of thePhyllocladusreproductive system point to theisolated position of the genus within the conifers. Relationswith Podocarpaceae s. l., Taxaceae s. l. and Cephalotaxaceaeappeared to be remote because a complex of features clearlydistinguishesPhyllocladusfrom the afore-mentioned taxa. We findit advisable to circumscribe the family Phyllocladaceae as Bessey(1907) did, and place it into the order Taxales Knobl. in Warming(1890). From investigations of the seeds it appears the genusPhyllocladusconsistsof seven species, forming five groups. There is a significanttendency for transformation of the female reproductive structureswithin the generic boundaries ofPhyllocladus—seeds, originallysolitary, tending to aggregate in various kinds of compact clusters.Copyright1999 Annals of Botany Company PhyllocladusL. C. & A. Rich, ex Mirb., seed anatomy, seed morphology, systematics, phylogenetic relationships, Phyllocladaceae, Podocarpaceae s. str., Acmopyleaceae, Nageiaceae, Austrotaxaceae, Amentotaxaceae, Torreyaceae, Taxaceae, s. str., Cephalotaxaceae, Taxales.  相似文献   

20.
The precise delimitation of Taxaceae and Cephalotaxaceae is not totally resolved. Some contradicting taxonomic proposals have been published, which demonstrates the difficulties in establishing a natural classification of the families and especially in proposing a relevant treatment within the genera Taxus and Cephalotaxus. The aims of this study are to contribute to the phylogeny and specific delineation of the two conifer families on the basis of molecular data. A cladistic analysis of the sequences of five chloroplast (matK, rbcL, trnL, trnL-trnF spacer, and psbA-trnH spacer) and one nuclear (ITS) molecular markers was carried out, both individually and in combination, by distance, parsimony, likelihood, and Bayesian methods. The results confirm that the two families are monophyletic. In the genus Taxus, T. floridana is the first-branching taxon; T. brevifolia and T. globosa cluster together and are sister to T. baccata; the endemic T. yunnanensis clusters with T. wallichiana in subclade B and is only distantly related with the other four Taxus species in China (subclade A); T. fuana is closer to T. baccata than to other Taxus species. Torreya jackii and A. formosana are the first-branching species within Torreya and Amentotaxus, respectively. C. koreana and C. wilsoniana could be treated as two varieties of C. harringtonia. The ancestral distribution area of Taxaceae and Cephalotaxaceae is restricted either to Southwest China or Southeast China by DIVA analysis. The relaxed molecular clock indicates that the deepest divergences in Taxus go back to the late-Cretaceous. psbA-trnH, rbcL third codon position, and matK first codon position contributed most to the separation of taxa in Discriminant function analysis. Our results confirm, on a basis of multiple molecular markers and a complete sampling of basic species, the suggested monophyly of Taxaceae and Cephalotaxaceae and propose interspecific relationships within each group, with profound nomenclatural and taxonomic implications. Combination of partitioned Bayesian analysis and likelihood-based methods produced a more robust phylogenetic hypothesis for the two studied families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号