首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We determined the complete nucleotide sequence of the toxB gene (375 base pairs in length), which encodes the B subunit of heat-labile enterotoxin produced from Escherichia coli pathogenic for humans (hLT). The amino acid sequence of the B subunit of hLT was deduced from the nucleotide sequence. Consequently, it has become possible to study the homology between the B subunits of three similar toxins: hLT, LT produced from E. coli pathogenic for piglets (pLT), and cholera toxin (the latter two sequences have been reported by others). The three B subunits are all 103 amino acids in length. A comparison of the toxB gene and the eltB gene, which encodes the B subunit of pLT, showed a 98% homology at the nucleotide level and a 95% homology at the amino acid (of a precursor) level, indicating the possibility that the two genes share a common ancestor. With respect to the B-subunit sequences, the homologies between hLT and pLT, between hLT and cholera toxin, and between pLT and cholera toxin were 96, 81, and 79%, respectively. Several large common sequences are conserved by the three peptides. In contrast, no sequences are present in both pLT and cholera toxin but missing in hLT.  相似文献   

2.
Pathogenic Escherichia coli can be classified into several pathotypes, and it is believed that each pathotype carries one or more specific gene repertoire (or virulence factors combination) that distinguishes them from non-pathogenic E. coli strains and from other pathotypes. In contrast to this notion, it was proposed that this is not the case for E. coli mastitis, a common disease in farm animals and that any given E. coli isolate can cause this disease, even strains that are considered non-pathogenic. In this review we will re-examine this latter concept and recent advances in the study E. coli mastitis.  相似文献   

3.
Many microbial pathogens manipulate the actin cytoskeleton of eukaryotic target cells to promote their internalization, intracellular motility and dissemination. Enteropathogenic and enterohaemorrhagic Escherichia coli, which both cause severe diarrhoeal disease, can adhere to mammalian intestinal cells and induce reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. As pedestal assembly is triggered by E. coli virulence factors that mimic several host cell-signalling components, such as transmembrane receptors, their cognate ligands and cytoplasmic adaptor proteins, it can serve as a powerful model system to study eukaryotic transmembrane signalling. Here, we consider the impact of recent data on our understanding of both E. coli pathogenesis and cell biology, and the rich prospects for exploiting these bacterial factors as versatile tools to probe cellular signalling pathways.  相似文献   

4.
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157 genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157 strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms. Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H(-) (the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including those associated with the cattle reservoir and human disease.  相似文献   

5.
Bacterial pathogens have evolved a sophisticated arsenal of virulence factors to modulate host cell biology. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) use a type III protein secretion system (T3SS) to inject microbial proteins into host cells. The T3SS effector cycle inhibiting factor (Cif) produced by EPEC and EHEC is able to block host eukaryotic cell-cycle progression. We present here a crystal structure of Cif, revealing it to be a divergent member of the superfamily of enzymes including cysteine proteases and acetyltransferases that share a common catalytic triad. Mutation of these conserved active site residues abolishes the ability of Cif to block cell-cycle progression. Finally, we demonstrate that irreversible cysteine protease inhibitors do not abolish the Cif cytopathic effect, suggesting that another enzymatic activity may underlie the biological activity of this virulence factor.  相似文献   

6.
AIMS: The survival characteristics of Escherichia Coli O157:H7 were investigated in bovine slurry from cattle fed two different diets: (i) silage and (ii) silage + concentrates. METHODS AND RESULTS: Slurry samples collected from freshly-agitated tanks were inoculated at a level of log10 6.0 cfu g(-1) and stored in the laboratory at 10 degrees C. Over a 12 week storage period, a 3.5 and 5.5 log reduction was observed in slurry from cattle fed a silage and silage plus concentrate diet, respectively. CONCLUSIONS: The persistence of E. coli O157:H7 in slurry over a 3 month storage period indicates its potential for transmitting the organism back into the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The discussion concludes however, that despite pathogen survival in slurry, it may not represent a major source of transmission in the farm environment.  相似文献   

7.
The probability of recovering pathogenic Escherichia coli from food by the Bacteriological Analytical Manual method was determined by the effects of several factors: the number of strains per food, the ability of pathogenic strains to survive enrichment, and the frequency of plasmid loss during enrichment. Biochemical patterns indicated the presence of about six E. coli strains per food sample. About half of the strains isolated from humans did not survive enrichment. Among those which grew, plasmid loss, as determined by gel electrophoresis and DNA colony hybridization, ranged from 20 to 95%. The combined effects of failure to survive enrichment and plasmid loss decreased the relative numbers of these strains and reduced the chance of detecting pathogens. To counteract this tendency and obtain a 90 to 95% probability off recovering a given pathogenic strain, 40 to 50 colonies per food sample should be picked during the routine testing of foods.  相似文献   

8.
The objective of this study was to characterize antimicrobial resistance and virulence determinants of Escherichia coli from soil amended with litter from 36-day-old broiler chickens ( Gallus gallus domesticus ) fed with diets supplemented with a variety of antimicrobial agents. Soil samples were collected from plots before and periodically after litter application in August to measure E. coli numbers. A total of 295 E.?coli were isolated from fertilized soil samples between August and March. Antibiotic susceptibility was determined by Sensititre, and polymerase chain reaction was performed to detect the presence of resistance and virulence genes. The results confirmed that E.?coli survived and could be quantified by direct plate count for at least 7 months in soil following litter application in August. The effects of feed supplementation were observed on E.?coli numbers in November and January. Among the 295 E.?coli, the highest antibiotic resistance level was observed against tetracycline and β-lactams associated mainly with the resistance genes tetB and bla(CMY-2), respectively. Significant treatment effects were observed for phylogenetic groups, antibiotic resistance profiles, and virulence gene frequencies. Serotyping, phylogenetic grouping, and pulsed-field gel electrophoresis confirmed that multiple-antibiotic-resistant and potentially pathogenic E.?coli can survive in soil fertilized with litter for several months regardless of antimicrobials used in the feed.  相似文献   

9.
A total of 361 Escherichia coli O157 isolates, recovered from humans, cattle, swine, and food during the years 1985 to 2000, were examined to better understand the prevalence of antimicrobial resistance among these organisms. Based on broth microdilution results, 220 (61%) of the isolates were susceptible to all 13 antimicrobials tested. Ninety-nine (27%) of the isolates, however, were resistant to tetracycline, 93 (26%) were resistant to sulfamethoxazole, 61 (17%) were resistant to cephalothin, and 48 (13%) were resistant to ampicillin. Highest frequencies of resistance occurred among swine isolates (n = 70), where 52 (74%) were resistant to sulfamethoxazole, 50 (71%) were resistant to tetracycline, 38 (54%) were resistant to cephalothin, and 17 (24%) were resistant to ampicillin. Based on the presence of Shiga toxin genes as determined by PCR, 210 (58%) of the isolates were identified as Shiga toxin-producing E. coli (STEC). Among these, resistance was generally low, yet 21 (10%) were resistant to sulfamethoxazole and 19 (9%) were resistant to tetracycline. Based on latex agglutination, 189 (52%) of the isolates were identified as E. coli O157:H7, among which 19 (10%) were resistant to sulfamethoxazole and 16 (8%) were resistant to tetracycline. The data suggest that selection pressure imposed by the use of tetracycline derivatives, sulfa drugs, cephalosporins, and penicillins, whether therapeutically in human and veterinary medicine or as prophylaxis in the animal production environment, is a key driving force in the selection of antimicrobial resistance in STEC and non-STEC O157.  相似文献   

10.
11.
12.

Background  

Though RpoS is important for survival of pathogenic Escherichia coli in natural environments, polymorphism in the rpoS gene is common. However, the causes of this polymorphism and consequential physiological effects on gene expression in pathogenic strains are not fully understood.  相似文献   

13.
Du X  Xia C  Shen J  Wu B  Shen Z 《FEMS microbiology letters》2004,236(2):183-189
Three floR genes were cloned from calf pathogenic Escherichia coli strains, and the efflux-mediated accumulation of florfenicol in the floR gene-JM109 E. coli system was determined by HPLC. The floR genes resulted in a 1356-bp fragment covering the ORF in region 66-1280 coding for 404 amino acids. The common motifs of 12-transmembrane segments efflux pumps family were conserved in the deduced floR amino acid sequences. HPLC results indicated a significant difference in florfenicol accumulation between florfenicol-resistant strains and the susceptible strains, which was almost reversed by the addition of a proton motive force blocker. These results suggest that the florfenicol resistance mediated by the floR gene involves active efflux of florfenicol.  相似文献   

14.
AIMS: To obtain the first information on the occurrence of Escherichia coli O157 on hides of slaughtered cattle in Serbia. METHODS AND RESULTS: A total of 355 swabs were taken on the slaughterline from five areas of hide of each of the 71 cattle in a single commercial abattoir in Serbia. Using an ISO method incorporating enrichment and immunomagnetic separation steps, E. coli O157 was isolated from the hides of 20 animals (28 x 2%). With respect to different areas of the hides, the occurrence of the pathogen was, in decreasing order: hooves (11 x 3%), brisket (8 x 4%), rump (7 x 0%), neck (4 x 2) and flank (2 x 8%). In addition, factors that had more or less effects on the occurrence included visible dirtiness of the hide, cattle's age category, geographical origin of the animals and season. CONCLUSIONS: This study revealed the presence of E. coli O157 in the beef chain in Serbia and confirmed hide as an important potential source of related contamination of beef carcasses. Therefore, incorporation of preskinning hide decontamination treatments into HACCP-based slaughterline hygiene control measures could be very useful. SIGNIFICANCE AND IMPACT OF THE STUDY: The results will enable further optimization of necessary measures along the beef chain to reduce the E. coli O157 risks in Serbia.  相似文献   

15.
We describe a novel proximity-dependent inhibition phenotype of Escherichia coli that is expressed when strains are cocultured in defined minimal media. When cocultures of "inhibitor" and "target" strains approached a transition between logarithmic and stationary growth, target strain populations rapidly declined >4 log CFU per ml over a 2-h period. Inhibited strains were not affected by exposure to conditioned media from inhibitor and target strain cocultures or when the inhibitor and target strains were incubated in shared media but physically separated by a 0.4-μm-pore-size membrane. There was no evidence of lytic phage or extracellular bacteriocin involvement, unless the latter was only present at effective concentrations within immediate proximity of the inhibited cells. The inhibitory activity observed in this study was effective against a diversity of E. coli strains, including enterohemorrhagic E. coli serotype O157:H7, enterotoxigenic E. coli expressing F5 (K99) and F4 (K88) fimbriae, multidrug-resistant E. coli, and commensal E. coli. The decline in counts of target strains in coculture averaged 4.8 log CFU/ml (95% confidence interval, 4.0 to 5.5) compared to their monoculture counts. Coculture of two inhibitor strains showed mutual immunity to inhibition. These results suggest that proximity-dependent inhibition can be used by bacteria to gain a numerical advantage when populations are entering stationary phase, thus setting the stage for a competitive advantage when growth conditions improve.  相似文献   

16.
A multiplex PCR-DNA probing assay was developed to detect four major Escherichia coli virotypes. Six highly specific polymerase chain reaction (PCR) primer sets and DIG-labeled chemiluminescent probes were designed to target the Shiga-like toxin I and II genes (stxI and stxII) of verotoxigenic E. coli (VTEC), heat-stable and heat-labile toxin genes of enterotoxigenic E. coli (ETEC), adherence factor (EAF) of enteropathogenic E. coli (EPEC) and a fragment of the invasiveness plasmid (IAL) of enteroinvasive E. coli (EIEC). The primer pairs generate products of 350, 262, 170, 322, 293 and 390 bp in length, respectively. The multiplex primers and probes were tested for specificity against 31 pathogenic E. coli strains, nine nonpathogenic E. coli and non-E.coli enteric and environmental bacterial strains. The results showed a high degree of specificity of the primers and probes for strains from corresponding virotypes and no reaction with the nontarget bacterial strains. The proposed multiplex PCR-DNA probing assay provides rapid and specific detection of four major virotypes of E. coli.  相似文献   

17.
S pili are members of the chaperone-usher-pathway-assembled pili family that are predominantly associated with neonatal meningitis (SII) and believed to play a role in ascending urinary tract infections (SI). We used force-measuring optical tweezers to characterize the intrinsic biomechanical properties and kinetics of SII and SI pili. Under steady-state conditions, a sequential unfolding of the layers in the helix-like rod occurred at somewhat different forces, 26 pN for SII pili and 21 pN for SI pili, and there was an apparent difference in the kinetics, 1.3 and 8.8 Hz. Tests with bacteria defective in a newly recognized sfa gene (sfaX II) indicated that absence of the sfaX II gene weakens the interactions of the fimbrium slightly and decreases the kinetics. Data of SI are compared with those of previously assessed pili primary associated with urinary tract infections, the P and type 1 pili. S pili have weaker layer-to-layer bonds than both P and type 1 pili, 21, 28 and 30 pN, respectively. In addition, the S pili kinetics are ~10 times faster than the kinetics of P pili and ~550 times faster than the kinetics of type 1 pili. Our results also show that the biomechanical properties of pili expressed ectopically from a plasmid in a laboratory strain (HB101) and pili expressed from the chromosome of a clinical isolate (IHE3034) are identical. Moreover, we demonstrate that it is possible to distinguish, by analyzing force-extension data, the different types of pili expressed by an individual cell of a clinical bacterial isolate.  相似文献   

18.
19.
Guide RNA molecules (crRNA) produced from clustered regularly interspaced short palindromic repeat (CRISPR) arrays, altogether with effector proteins (Cas) encoded by cognate cas (CRISPR associated) genes, mount an interference mechanism (CRISPR-Cas) that limits acquisition of foreign DNA in Bacteria and Archaea. The specificity of this action is provided by the repeat intervening spacer carried in the crRNA, which upon hybridization with complementary sequences enables their degradation by a Cas endonuclease. Moreover, CRISPR arrays are dynamic landscapes that may gain new spacers from infecting elements or lose them for example during genome replication. Thus, the spacer content of a strain determines the diversity of sequences that can be targeted by the corresponding CRISPR-Cas system reflecting its functionality. Most Escherichia coli strains possess either type I-E or I-F CRISPR-Cas systems. To evaluate their impact on the pathogenicity of the species, we inferred the pathotype and pathogenic potential of 126 strains of this and other closely related species and analyzed their repeat content. Our results revealed a negative correlation between the number of I-E CRISPR units in this system and the presence of pathogenicity traits: the median number of repeats was 2.5-fold higher for commensal isolates (with 29.5 units, range 0–53) than for pathogenic ones (12.0, range 0–42). Moreover, the higher the number of virulence factors within a strain, the lower the repeat content. Additionally, pathogenic strains of distinct ecological niches (i.e., intestinal or extraintestinal) differ in repeat counts. Altogether, these findings support an evolutionary connection between CRISPR and pathogenicity in E. coli.  相似文献   

20.
Despite the critical role of plasmids in horizontal gene transfer, few studies have characterized plasmid relatedness among different bacterial populations. Recently, a multiplex PCR replicon typing protocol was developed for classification of plasmids occurring in members of the Enterobacteriaceae. Here, a simplified version of this replicon typing procedure which requires only three multiplex panels to identify 18 plasmid replicons is described. This method was used to screen 1,015 Escherichia coli isolates of avian, human, and poultry meat origin for plasmid replicon types. Additionally, the isolates were assessed for their content of several colicin-associated genes. Overall, a high degree of plasmid variability was observed, with 221 different profiles occurring among the 1,015 isolates examined. IncFIB plasmids were the most common type identified, regardless of the source type of E. coli. IncFIB plasmids occurred significantly more often in avian pathogenic E. coli (APEC) and retail poultry E. coli (RPEC) than in uropathogenic E. coli (UPEC) and avian and human fecal commensal E. coli isolates (AFEC and HFEC, respectively). APEC and RPEC were also significantly more likely than UPEC, HFEC, and AFEC to possess the colicin-associated genes cvaC, cbi, and/or cma in conjunction with one or more plasmid replicons. The results suggest that E. coli isolates contaminating retail poultry are notably similar to APEC with regard to plasmid profiles, with both generally containing multiple plasmid replicon types in conjunction with colicin-related genes. In contrast, UPEC and human and avian commensal E. coli isolates generally lack the plasmid replicons and colicin-related genes seen in APEC and RPEC, suggesting limited dissemination of such plasmids among these bacterial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号