首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The rate-limiting step in the de novo synthesis of the cellular protectant glutathione is catalyzed by gamma-glutamylcysteine synthetase (GCS; also known as glutamine-L-cysteine ligase, GLCL), a heterodimer consisting of catalytic (GCS(h)) and regulatory (GCS(l)) subunits. Regulation of expression of the human gamma-glutamylcysteine synthetase regulatory subunit gene in response to beta-NF is mediated by an Electrophile Responsive Element (EpRE) [Moinova, H., and Mulcahy, R. T. (1998) J. Biol. Chem. 273, 14683-14689]. Oligonucleotide probes corresponding to wild-type and mutant EpRE sequences were used in gel-shift and super-shift analyses to identify proteins binding. Four protein:DNA complexes (a-d) with distinct mobilities were detected when the wild-type EpRE probe was incubated with nuclear extracts from control or beta-NF-treated HepG2 cells. Following beta-NF treatment, there was an increase in the intensity of a single band, band b. This band was eliminated in gel shifts employing mutant EpRE probes which abolish beta-NF inducibility, demonstrating a correlation between band b and transactivation. Super-shift analysis identified JunD, Nrf1, and Nrf2 in the EpRE-binding complexes. Antibodies to Nrf2 completely super-shifted the band b protein:DNA complex. These studies demonstrate that Nrf2 proteins recognize and bind the GCS(l) EpRE sequence to affect transactivation of the gene.  相似文献   

4.
5.
Human NRH:quinone oxidoreductase 2 (NQO2) is a cytosolic protein that catalyzes the metabolic reduction of quinones and provides protection against myelogenous hyperplasia and chemical carcinogenesis. NQO2 gene expression is induced in response to antioxidant tert-butylhydroquinone (tBHQ). Sequence analysis revealed six putative antioxidant response elements (ARE1 through 6) in the human NQO2 gene promoter. Deletion mutagenesis and transfection studies suggested that the ARE region between nucleotides -1433 and -1424 is essential for basal expression and antioxidant induction of NQO2 gene expression. Mutation of this ARE from 3.8 kb NQO2 gene promoter significantly repressed expression and abrogated the induction in response to antioxidant in transfected cells. Band shift, supershift, and chromatin immunoprecipitation (ChIP) assays demonstrated binding of nuclear factors Nrf2 and JunD with human NQO2 gene ARE. Coimmunoprecipitation experiments revealed an association between Nrf2 and JunD. Overexpression of Nrf2 upregulated and overexpression of Nrf2 dominant-negative mutant downregulated ARE-mediated NQO2 gene expression. The treatment of Hep-G2 cells with Nrf2-specific RNAi significantly reduced Nrf2 and NQO2 gene expression and tBHQ induction. The results combined demonstrated that Nrf2 associates with JunD, binds to ARE at nucleotide -1433, and regulates human NQO2 gene expression and induction in response to antioxidants.  相似文献   

6.
7.
8.
We present evidence that pyrrolidine dithiocarbamate (PDTC) inhibits growth of p53-negative pancreatic adenocarcinoma cell lines via cell cycle arrest in the S-phase, while it has no effect on primary fibroblast proliferation. Growth inhibition of cancer cells is dependent on ROS and ERK1/2 induction as indicated by a significantly reduced PDTC-associated growth inhibition by the free radical scavenger N-acetyl-L-cysteine (NAC) or the MEK/ERK1/2 inhibitor (PD98059). Moreover, ERK1/2 induction is dependent on ROS production as demonstrated by a complete removal of PDTC-mediated ERK1/2 phosphorylation by NAC. p21(WAF1/CIP1) activation has a central role in growth inhibition by PDTC, as revealed by P21(WAF1/CIP1) silencing experiments with antisense oligonucleotide, and occurs via increased mRNA stability largely mediated by ROS/ERK induction. Conversely, PDTC does not affect P21(WAF1/CIP1) gene expression in primary fibroblasts, although it is able to activate p53 and the p53-regulated antioxidant SESN2. These results suggest that the resistance of fibroblasts to the cytotoxic action of PDTC may be related to the up-regulation of p53-dependent antioxidant genes. Finally, in vivo studies on PaCa44 cells subcutaneously xenografted in nude mice show that treatment with 100 or 200 mg/kg PDTC reduces of 30% or 60% the tumour volume, respectively, and does not cause any apparent form of toxicity.  相似文献   

9.
10.
11.
Chemical modification of chitosan is a promising method for the improvement of biological activity. In this study, chitosan-caffeic acid (CCA) was prepared and its in vitro hepatoprotective ability against hydrogen peroxide-induced hepatic damage in liver cells was evaluated. Treatment with CCA (50–400 µg/mL) did not show cytotoxicity and also significantly (p < 0.05) recovered cell viability against 650 µM hydrogen peroxide-induced hepatotoxicity. CCA treatment attenuated reactive oxygen species generation and lipid peroxidation in addition to increasing cellular glutathione level in cultured hepatocytes. To validate the underlying mechanism, antioxidant and phase II detoxifying enzyme expressions, which are mediated by NF-E2-related factor 2 (Nrf2) activation, were analyzed and CCA treatment was found to increase the expression of superoxide dismutase-1 (SOD-1), glutathione reductase (GR), heme oxygenase-1 (HO-1), and NAD(P)H:quinine oxidoreductase 1 (NQO1). CCA treatment resulted in increased Nrf2 nuclear translocation. The phosphorylation of extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) by CCA treatment contributed to Nrf2 activation. Pharmacological blockade of ERK, JNK, and p38 MAPK revealed that SP600125 (JNK inhibitor) and PD98059 (ERK inhibitor) treatment reduced Nrf2 translocation into the nucleus while SB203580 (p38 inhibitor) exhibited weak inhibition. Collectively, CCA protects liver cells against hydrogen peroxide-induced injury and this ability is attributed to the induction of antioxidants and phase II detoxifying enzymes that are mediated by Nrf2 translocation via JNK/ERK signaling.  相似文献   

12.
Transforming growth factor beta (TGF-beta) activates Ras/MAPK signaling in many cell types. Because TGF-beta and BMP-2 exert similar effects, we examined if this signaling is stimulated by both factors and analyzed the relationship between this signaling and the Smads in osteoblasts. BMP-2 and TGF-beta stimulated Ras, MAPK, and AP-1 activities. The DNA binding activities of c-Fos, FosB/Delta FosB, Fra-1, Fra-2, and JunB were up-regulated whereas JunD activity was decreased. c-Fos, FosB/Delta FosB, and JunB were associated with Smad4. The stimulation of AP-1 by BMP-2 and TGF-beta was dependent on Smad signaling, and anti-Smad4 antibody interfered with AP-1 activity. Thus, BMP-2 and TGF-beta activate both Ras/MAPK/AP-1 and Smad signaling in osteoblasts with Smads modulating AP-1 activity. To determine the roles of MAPK in BMP-2 and TGF-beta function, we analyzed the effect of ERK and p38 inhibitors on the regulation of bone matrix protein expression and JunB and JunD levels by these two factors. ERK and p38 mediated TGF-beta suppression of osteocalcin and JunD as well as stimulation of JunB. p38 was essential in BMP-2 up-regulation of type I collagen, fibronectin, osteopontin, osteocalcin, and alkaline phosphatase activity whereas ERK mediated BMP-2 stimulation of fibronectin and osteopontin. Thus, ERK and p38 differentially mediate TGF-beta and BMP-2 function in osteoblasts.  相似文献   

13.
14.
15.
16.
17.
Abstract This study examined the effects of (-)schisandrin B [(-)Sch B] on MAPK and Nrf2 activation and the subsequent induction of glutathione antioxidant response and cytoprotection against apoptosis in AML12 hepatocytes. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitors and Nrf2 RNAi, were used to delineate the signalling pathway. (-)Sch B caused a time-dependent activation of MAPK in AML12 cells, particularly the ERK1/2. The MAPK activation was followed by an enhancement in Nrf2 nuclear translocation and the eliciting of a glutathione antioxidant response. Reactive oxygen species arising from a CYP-catalysed reaction with (-)Sch B seemed to be causally related to the activation of MAPK and Nrf2. ERK inhibition by U0126 or Nrf2 suppression by Nrf2 RNAi transfection almost completely abrogated the cytoprotection against menadione-induced apoptosis in (-)Sch B-pre-treated cells. (-)Sch B pre-treatment potentiated the menadione-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against carbon tetrachloride-hepatotoxicity in an in vivo mouse model. In conclusion, (-)Sch B triggers a redox-sensitive ERK/Nrf2 signalling, which then elicits a cellular glutathione antioxidant response and protects against oxidant-induced apoptosis in AML12 cells.  相似文献   

18.
As the intestinal epithelium is vulnerable to oxidative stress because of frequent enterocyte renewal and continuous exposure to exogenous agents, it is meaningful to figure out how the epithelial cells exert antioxidant function. We previously synthesized a novel biogenic nanoselenium (BNS) particles and proved that BNS could effectively improve intestinal antioxidative function through activating Nrf2-ARE pathway. The objective of the present study was to investigate the mechanism by which BNS activate Nrf2-ARE pathway on the physiological function of intestinal epithelial cells. In the present study, we demonstrated that treatment of IPEC-J2 cells with BNS particles not only elevated the levels of downstream proteins of nuclear factor (erythroid-derived-2)-like 2 (Nrf2) such as heme oxygenase-1 and NQO-1 in a time-dependent manner which started to weaken at 12 hr after treatment but also significantly activated Nrf2, mitogen-activated protein kinase (MAPK), and protein kinase B (AKT) pathway in a time-dependent manner within 24 hr. BNS particles significantly increased the content of phosphorylated-Nrf2, without evident influence on the level of Kelch-like ECH-associated protein 1 (Keap1). Moreover, BNS also induced the activation of p38, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase, and AKT while phosphorylating Nrf2. Using specific protein kinase inhibitors, we found that the Nrf2-phosphorylating and antioxidative effects of BNS particles were abolished when p38, ERK1/2, and AKT were significantly inhibited. Overall, our data demonstrated that BNS particles activated Nrf2-ARE pathway through p38, ERK1/2, and AKT mediated-phosphorylation of Nrf2 to improve the antioxidant function of intestinal epithelial cells  相似文献   

19.
This study investigated the signal transduction pathway involved in the cytoprotective action of (-)schisandrin B [(-)Sch B, a stereoisomer of Sch B]. Using H9c2 cells, the authors examined the effects of (-)Sch B on MAPK and Nrf2 activation, as well as the subsequent eliciting of glutathione response and protection against apoptosis. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitor, and Nrf2 RNAi, were used to delineate the signaling pathway. (-)Sch B caused a time-dependent activation of MAPK in H9c2 cells, with the degree of ERK activation being much larger than that of p38 or JNK. The MAPK activation was followed by an increase in the level of nuclear Nrf2, an indirect measure of Nrf2 activation, and the eliciting of a glutathione antioxidant response. The activation of MAPK and Nrf2 seemed to involve oxidants generated from a CYP-catalyzed reaction with (-)Sch B. Both ERK inhibition by U0126 and Nrf2 suppression by Nrf2 RNAi transfection largely abolished the cytoprotection against hypoxia/reoxygenation-induced apoptosis in (-)Sch B-pretreated cells. (-)Sch B pretreatment potentiated the reoxygenation-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against ischemia/reperfusion injury in an ex vivo rat heart model. The results indicate that (-)Sch B triggers a redox-sensitive ERK/Nrf2 signaling, which then elicits a cellular glutathione antioxidant response and protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. The ERK-mediated signaling is also likely involved in the cardioprotection afforded by Sch B in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号