首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoskeleton plays an important role in neuronal morphogenesis. We have identified and characterized a novel actin-binding protein, termed Mayven, predominantly expressed in brain. Mayven contains a BTB (broad complex, tramtrack, bric-a-brac)/POZ (poxvirus, zinc finger) domain-like structure in the predicted N terminus and "kelch repeats" in the predicted C-terminal domain. Mayven shares 63% identity (77% similarity) with the Drosophila ring canal ("kelch") protein. Somatic cell-hybrid analysis indicated that the human Mayven gene is located on chromosome 4q21.2, whereas the murine homolog gene is located on chromosome 8. The BTB/POZ domain of Mayven can self-dimerize in vitro, which might be important for its interaction with other BTB/POZ-containing proteins. Confocal microscopic studies of endogenous Mayven protein revealed a highly dynamic localization pattern of the protein. In U373-MG astrocytoma/glioblastoma cells, Mayven colocalized with actin filaments in stress fibers and in patchy cortical actin-rich regions of the cell margins. In primary rat hippocampal neurons, Mayven is highly expressed in the cell body and in neurite processes. Binding assays and far Western blotting analysis demonstrated association of Mayven with actin. This association is mediated through the "kelch repeats" within the C terminus of Mayven. Depolarization of primary hippocampal neurons with KCl enhanced the association of Mayven with actin. This increased association resulted in dynamic changes in Mayven distribution from uniform to punctate localization along neuronal processes. These results suggest that Mayven functions as an actin-binding protein that may be translocated along axonal processes and might be involved in the dynamic organization of the actin cytoskeleton in brain cells.  相似文献   

2.
The Drosophila kelch protein is a structural component of ring canals and is required for oocyte maturation. Here, we report the cloning and genomic structure of a new human homologue of kelch, KLHL3. At the amino acid level, KLHL3 shares 77% similarity with Drosophila kelch and 89% similarity with Mayven (KLHL2), another human kelch homolog. The approximately 6.5-kb mRNA has a single open reading frame encoding a protein of 587 amino acids with a predicted molecular mass of 650 kDa. Like kelch and KLHL2, the KLHL3 protein contains a poxvirus and zinc finger domain at the N-terminus and six tandem repeats (kelch repeats) at the C-terminus. At least three isoforms, which differ in the length of the N-terminus, are produced and may be the result of alternative promoter usage. We also identified alternative polyadenylation sites and alternative splicing; thus, as many as 12 mRNA variants and six putative protein isoforms could be produced. The KLHL3 gene is mapped to human chromosome 5, band q31, contains 17 exons, and spans approximately 120 kb of genomic DNA. KLHL3 maps within the smallest commonly deleted segment in myeloid leukemias characterized by a deletion of 5q; however, we detected no inactivating mutations of KLHL3 in malignant myeloid disorders with loss of 5q.  相似文献   

3.
4.
5.
Rearrangement of the cytoskeleton leading to the extension of cellular processes is essential for the myelination of axons by oligodendrocytes. We observed that the actin-binding protein, Mayven, is expressed during all stages of the oligodendrocyte lineage, and that its expression is up-regulated during oligodendrocyte differentiation. Mayven is localized in the cytoplasm and along the cell processes. Mayven also binds actin, and is involved in the cytoskeletal reorganization in oligodendrocyte precursor cells (O-2A cells) that leads to process elongation. Mayven overexpression resulted in an increase in the process outgrowth of O-2A cells and in the lengths of the processes, while microinjection of Mayven-specific antibodies inhibited process extension in these cells. Furthermore, O-2A cells transduced with recombinant retroviral sense Mayven (pMIG-W-Mayven) showed an increase in the number of oligodendrocyte processes with outgrowth, while recombinant retroviral antisense Mayven (pMIG-W-Mayven-AS) blocked O-2A process extension. Interestingly, co-localization and association of Mayven with Fyn kinase were found in O-2A cells, and these interactions were increased during the outgrowth of oligodendrocyte processes. This association was mediated via the SH3 domain ligand (a.a. 1-45) of Mayven and the SH3 domain of Fyn, suggesting that Mayven may act as a linker to bind Fyn, via its N-terminus. Thus, Mayven plays a role in the dynamics of cytoskeletal rearrangement leading to the process extension of oligodendrocytes.  相似文献   

6.
Cell division in nearly all bacteria is initiated by polymerization of the conserved tubulin-like protein FtsZ into a ring-like structure at midcell. This Z-ring functions as a scaffold for a group of conserved proteins that execute the synthesis of the division septum (the divisome). Here we describe the identification of a new cell division protein in Bacillus subtilis. This protein is conserved in Gram positive bacteria, and because it has a role in septum development, we termed it SepF. sepF mutants are viable but have a cell division defect, in which septa are formed slowly and with a severely abnormal morphology. Yeast two-hybrid analysis showed that SepF can interact with itself and with FtsZ. Accordingly, fluorescence microscopy showed that SepF accumulates at the site of cell division, and this localization depends on the presence of FtsZ. Combination of mutations in sepF and ezrA, encoding another Z-ring interacting protein, had a synthetic lethal division effect. We conclude that SepF is a new member of the Gram positive divisome, required for proper execution of septum synthesis.  相似文献   

7.
8.
9.
10.
Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin.  相似文献   

11.
Dismuke WM  McKay BS  Stamer WD 《Biochemistry》2012,51(17):3606-3613
Myocilin is a widely expressed protein with no known function; however, mutations in myocilin appear to manifest uniquely as ocular hypertension and the blinding disease of glaucoma. Using the protein homology/analogy recognition engine (Phyre), we find that the olfactomedin domain of myocilin is similar in sequence motif and structure to a six-blade, kelch repeat motif based on the known crystal structures of such proteins. Additionally, using sequence analysis, we identify a coiled-coil segment of myocilin with homology to human Q-SNARE proteins (inset). Using COS-7 cells expressing full-length human myocilin and a version lacking the C-terminal olfactomedin domain, we identified a membrane-associated protein complex containing myocilin by hydrodynamic analysis. The myocilin construct that included the coiled-coil but lacked the olfactomedin domain formed complexes similar to the full-length protein, indicating that the coiled-coil domain of myocilin is sufficient for myocilin binding to the large detergent-resistant complex. In human retina and retinal pigment epithelium, which express myocilin, we detected the protein in a large, sodium dodecyl sulfate-resistant, membrane-associated complex. We characterized myocilin in human tissues as either a 15 S complex with an M(r) of 405000-440000 yielding a slightly elongated globular shape similar to that of known SNARE complexes or a 6.4 S dimer with an M(r) of 108000. By identifying the Q-SNARE homology within the second coil of myocilin and documenting its participation in a SNARE-like complex, we provide evidence of a SNARE domain-containing protein associated with a human disease.  相似文献   

12.
In the sequences released by the Arabidopsis Genome Initiative (AGI), we have discovered a new large gene family (48 genes as of July 2000). A detailed computational and biochemical analysis of the predicted gene products reveals a novel family of plant F-box proteins, where the amino (N)-terminal F-box motif is followed by four kelch repeats and a characteristic carboxy-terminal domain. F-box proteins are an expanding family of eukaryotic proteins, which have been shown in some cases to be critical for the controlled degradation of cellular regulatory proteins via the ubiquitin pathway. The F-box motif of the At5g48990 gene product, a member of the family, was shown to be functionally active by its ability to mediate the in vitro interaction between At5g48990 and ASK1 proteins. F-box proteins specifically recruit the targets to be ubiquitinated, mainly through protein-protein interaction modules such as WD-40 domains or leucine-rich repeats (LRRs). The kelch repeats of the family described here form a potential protein-protein interaction domain, as molecular modelling of the kelch repeats according to the galactose oxidase crystal structure (the only solved structure containing kelch repeats) predicts a -propeller. The identification of this family of F-box proteins greatly expands the field of plant F-box proteins and suggests that controlled degradation of cellular proteins via the ubiquitin pathway could play a critical role in multiple plant cellular processes.  相似文献   

13.
P25, a Beet necrotic yellow vein virus (BNYVV) pathogenicity factor, interacts with a sugar beet protein with high homology to Arabidopsis thaliana kelch repeat containing F-box family proteins (FBK) of unknown function in yeast. FBK are members of the Skp1-Cullin-F-box (SCF) complex that mediate protein degradation. Here, we confirm this sugar beet FBK-P25 interaction in vivo and in vitro and provide evidence for in planta interaction and similar subcellular distribution in Nicotiana tabacum leaf cells. P25 even interacts with an FBK from A. thaliana, a BNYVV nonhost. FBK functional classification was possible by demonstrating the interaction with A. thaliana orthologs of Skp1-like (ASK) genes, a member of the SCF E3 ligase. By means of a yeast two-hybrid bridging assay, a direct effect of P25 on SCF-complex formation involving ASK1 protein was demonstrated. FBK transient Agrobacterium tumefaciens-mediated expression in N. benthamiana leaves induced a hypersensitive response. The full-length F-box protein consists of one F-box domain followed by two kelch repeats, which alone were unable to interact with P25 in yeast and did not lead to cell-death induction. The results support the idea that P25 is involved in virus pathogenicity in sugar beet and suggest suppression of resistance response.  相似文献   

14.
15.
Visualization of a cytoskeleton-like FtsZ network in chloroplasts   总被引:20,自引:0,他引:20  
It has been a long-standing dogma in life sciences that only eukaryotic organisms possess a cytoskeleton. Recently, this belief was questioned by the finding that the bacterial cell division protein FtsZ resembles tubulin in sequence and structure and, thus, may be the progenitor of this major eukaryotic cytoskeletal element. Here, we report two nuclear-encoded plant ftsZ genes which are highly conserved in coding sequence and intron structure. Both their encoded proteins are imported into plastids and there, like in bacteria, they act on the division process in a dose-dependent manner. Whereas in bacteria FtsZ only transiently polymerizes to a ring-like structure, in chloroplasts we identified persistent, highly organized filamentous scaffolds that are most likely involved in the maintenance of plastid integrity and in plastid division. As these networks resemble the eukaryotic cytoskeleton in form and function, we suggest the term "plastoskeleton" for this newly described subcellular structure.  相似文献   

16.
We isolated Nd1, a novel kelch family gene that encodes two forms of proteins, Nd1-L and Nd1-S. Nd1-L contains a BTB/POZ domain in its N terminus and six kelch repeats in the C terminus. Nd1-S has the BTB/POZ domain but lacks the six kelch repeats. Nd1-L but not Nd1-S mRNA is detected ubiquitously in normal mouse tissues. Nd1-L and Nd1-S proteins can form a dimer through the BTB/POZ domain. Nd1-L colocalizes with actin filaments detected using a confocal microscope, and its kelch repeats bind to them in vitro. Overexpression of Nd1-L in NIH3T3 cells delayed cell growth by affecting the transition of cytokinesis. Furthermore, the overexpression prevented NIH3T3 cells from cell death induced by actin destabilization but not by microtubule dysfunction. These data suggest that Nd1-L functions as a stabilizer of actin filaments as an actin-binding protein and may play a role in the dynamic organization of the actin cytoskeleton.  相似文献   

17.
The V(D)J recombination reaction is composed of multiple nucleolytic processing steps mediated by the recombination-activating proteins RAG1 and RAG2. Sequence analysis has suggested that RAG2 contains six kelch repeat motifs that are predicted to form a six-bladed beta-propeller structure, with the second beta-strand of each repeat demonstrating marked conservation both within and between kelch repeat-containing proteins. Here we demonstrate that mutations G95R and DeltaI273 within the predicted second beta-strand of repeats 2 and 5 of RAG2 lead to immunodeficiency in patients P1 and P2. Green fluorescent protein fusions with the mutant proteins reveal appropriate localization to the nucleus. However, both mutations reduce the capacity of RAG2 to interact with RAG1 and block recombination signal cleavage, therefore implicating a defect in the early steps of the recombination reaction as the basis of the clinical phenotype. The present experiments, performed with an extensive panel of site-directed mutations within each of the six kelch motifs, further support the critical role of both hydrophobic and glycine-rich regions within the second beta-strand for RAG1-RAG2 interaction and recombination signal recognition and cleavage. In contrast, multiple mutations within the variable-loop regions of the kelch repeats had either mild or no effects on RAG1-RAG2 interaction and hence on the ability to mediate recombination. In all, the data demonstrate a critical role of the RAG2 kelch repeats for V(D)J recombination and highlight the importance of the conserved elements of the kelch motif.  相似文献   

18.
The kelch repeat superfamily of proteins: propellers of cell function   总被引:33,自引:0,他引:33  
The kelch motif was discovered as a sixfold tandem element in the sequence of the Drosophila kelch ORF1 protein. The repeated kelch motifs predict a conserved tertiary structure, a beta-propeller. This module appears in many different polypeptide contexts and contains multiple potential protein-protein contact sites. Members of this growing superfamily are present throughout the cell and extracellularly and have diverse activities. In this review, we discuss current information concerning the structural organization of kelch repeat proteins, their biological roles and the molecular basis of their action.  相似文献   

19.
Nelson DC  Lasswell J  Rogg LE  Cohen MA  Bartel B 《Cell》2000,101(3):331-340
Plant reproduction requires precise control of flowering in response to environmental cues. We isolated a late-flowering Arabidopsis mutant, fkf1, that is rescued by vemalization or gibberellin treatment. We positionally cloned FKF1, which encodes a novel protein with a PAS domain similar to the flavin-binding region of certain photoreceptors, an F box characteristic of proteins that direct ubiquitin-mediated degradation, and six kelch repeats predicted to fold into a beta propeller. FKF1 mRNA levels oscillate with a circadian rhythm, and deletion of FKF1 alters the waveform of rhythmic expression of two clock-controlled genes, implicating FKF1 in modulating the Arabidopsis circadian clock.  相似文献   

20.
Drosophila Kelch Is an Oligomeric Ring Canal Actin Organizer   总被引:9,自引:0,他引:9       下载免费PDF全文
Drosophila kelch has four protein domains, two of which are found in kelch-family proteins and in numerous nonkelch proteins. In Drosophila, kelch is required to maintain ring canal organization during oogenesis. We have performed a structure–function analysis to study the function of Drosophila kelch. The amino-terminal region (NTR) regulates the timing of kelch localization to the ring canals. Without the NTR, the protein localizes precociously and destabilizes the ring canals and the germ cell membranes, leading to dominant sterility. The amino half of the protein including the BTB domain mediates dimerization. Oligomerization through the amino half of kelch might allow cross-linking of ring canal actin filaments, organizing the inner rim cytoskeleton. The kelch repeat domain is necessary and sufficient for ring canal localization and likely mediates an additional interaction, possibly with actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号