首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzyme purification using temperature-induced phase formation.   总被引:1,自引:0,他引:1  
A new type of aqueous two-phase system composed of an ethylene oxide and propylene oxide random co-polymer, UCON 50-HB-5100, as the upper phase polymer and either dextran or hydroxypropyl starch as the lower phase polymer has been characterized and used to purify 3-phosphoglycerate kinase (EC 2.7.2.3) and hexokinase (EC 2.7.1.1) from bakers' yeast. The UCON 50-HB-5100 polymer has a cloud point of 55 degrees C at which temperature it phase separates from water. This cloud point can be lowered to 40 degrees C by the addition of 0.2 M sodium sulfate salt. The low cloud point of this UCON polymer makes it possible to obtain the target enzymes in a water and buffer solution, and to recover and recycle the UCON 50-HB-5100 polymer. The phase diagrams for the systems UCON 50-HB-5100/Dextran T500 and UCON 50-HB-5100/hydroxypropyl starch have been determined. Yeast homogenate was first partitioned in a system composed of a top phase containing UCON 50-HB-5100 and a bottom phase containing either dextran or hydroxypropyl starch. The top phase containing the enzyme free of cell debris was removed and the temperature increased above the cloud point of the UCON until a new two phase system composed of water as the top phase and a concentrated liquid UCON 50-HB-5100 bottom phase was formed. The water phase containing the enzyme was removed and the bottom phase containing the UCON 50-HB-5100 could be recycled to perform a second extraction.  相似文献   

2.
1. Membranes obtained by lysis and Yeda-press treatment of synaptosomes (nerve endings) from cortex, caudateus nucleus, and hippocampal region of calf brain have been studied by partitioning within a liquid-liquid aqueous two-phase system consisting of water, dextran, Ficoll, and poly(ethylene glycol). 2. The partitioning of membranes was sensitive to the presence of a dextran-bound dye, Procion yellow HE-3G, in the lower phase. 3. The two-phase system was used for counter-current distribution to study the heterogeneity of the synaptic membranes from the three regions of the brain and to separate the membranes into fractions. 4. The obtained counter-current distribution profiles strongly depended on the region of the brain from which the membranes were isolated. 5. The membrane fractions obtained showed marked differences in their SDS electrophoresis pattern.  相似文献   

3.
Rapid liquid-liquid extraction of lactate dehydrogenase from muscle by using a low-cost aqueous bipolymer two-phase system was achieved by using a centrifugal separator. Extraction of the target enzyme into the upper phase was enhanced by including the dye Procion yellow HE-3G (bound to polyethylene glycol). The dye acted as an affinity ligand for the enzyme. The isolation of the enzyme was carried out either by using a cell extract or by homogenizing the muscle directly in the system. The latter approach reduced the preparation time with a factor of 0.25. The two methods gave, respectively, 310 and 360 kU lactate dehydrogenase/kg muscle (measured at 22 degrees C). By using a small centrifugal separator, Alfa Laval LAPX 202, 3-5 kg muscle could be processed/h in a 30-L, two-phase system.  相似文献   

4.
The enzymes glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 3-phosphoglycerate kinase (EC 2.7.2.3), present in an extract of Bakers' yeast, are largely kept in solution by minor amounts of polyethylene glycol-bound triazine dyes (Procion yellow HE-3G and Procion olive MX-3G) even when the solution contains such concentrations of polyethylene glycol (12.5% w/w) which normally precipitate the enzymes. The specific prevention from precipitation can be used for purification of enzyme, preferentially in dealing with crude extracts, which has been demonstrated in this work. A 3.4-fold purification of glucose-6-phosphate dehydrogenase has been achieved with good recovery (93%). Further purification has been possible by combining the recovered (enzyme-containing) supernatant liquid with a solution of dextran which generates an aqueous two-phase system. The lower, dextran-containing phase extracts part of the remaining bulk proteins leaving the target enzyme in the upper phase. The advantages of this method for enzyme purification in large scale are discussed.  相似文献   

5.
Fluorescence titration has been used to determine the binding constant and number of binding sites for the textile triazine dye Procion Yellow HE-3G to lactate dehydrogenase from rabbit muscle (E.C. 1.1.1.27). Triazine dye was either free in solution or attached to one of the polymer carriers, polyethylene glycol or dextran. Titrations were performed in solutions of buffer, dextran, and polyethylene glycol. Aqueous two-phase systems composed of polyethylene glycol and dextran were prepared and the binding constant and number of binding sites for ligand polyethylene glycol-Procion Yellow to lactate dehydrogenase were determined in both upper and lower phases of these systems. Affinity partition of lactate dehydrogenase in a PEG-dextran system was also performed using PEG-Procion Yellow as ligand, and partition coefficients of lactate dehydrogenase showed good agreement with theoretical partition coefficients calculated from the binding constant and number of binding sites obtained from fluorescence titration. The advantage of using fluorescence titration to determine affinity of a polymer ligand for a protein is that measurement of binding strength can be made in the actual environment encountered by protein-ligand complex during the purification process.  相似文献   

6.
The interaction of yeast hexokinase with Procion Green H-4G.   总被引:4,自引:3,他引:1       下载免费PDF全文
1. A number of reactive triazine dyes specifically and irreversibly inactive yeast hexokinase at pH 8.5 and 33 degrees C. Under these conditions, the enzyme is readily inactivated by 100 microM-Procion Green H-4G, Blue H-B, Turquoise H-7G and Turquoise H-A, is less readily inactivated by Procion Brown H-2G. Green HE-4BD, Red HE-3B and Yellow H-5G and is not inactivated at all by Procion Yellow H-A. 2. The inactivation of hexokinase by Procion Green H-4G is competitively inhibited by the adenine nucleotides ATP and ADP and the sugar substrates D-glucose, D-mannose and D-fructose but not by nonsubstrates such as D-arabinose and D-galactose. 3. Quantitatively inhibited hexokinase contains approx. 1 mol of dye per mol of monomer of mol.wt. 51000. The inhibition is irreversible and activity cannot be recovered on incubation with high concentration (20 mM) of ATP or D-glucose. 4. Mg2+ protects the enzyme against inactivation by Procion Green H-4G but enhances the rate of inactivation by all the other Procion dyes tested. In the presence of 10 mM-Mg2+ the apparent dissociation constant between enzyme and dye is reduced from 199.0 microM to 41.6 microM. Binding of the dye to hexokinase is accompanied by characteristic spectral changes in the range 560-700 nm. 5. Mg2+ promotes binding of yeast hexokinase to agarose-immobilized Procion Green H-4G but not to the other dyes tested. Elution could be effected by omission of Mg2+ from the column irrigants or by inclusion of MgATP or D-glucose, but not by D-galactose. These effects can be exploited to purify hexokinase from crude yeast extracts. 6. The specific active-site-directed binding of triazine dyes to yeast hexokinase is interpreted in terms of the crystallographic structure of the hexokinase monomer.  相似文献   

7.
d-Glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate:NADP+ 1-oxidoreductase EC 1.1.1.49) has been purified from bakers' yeast by liquid-liquid extraction using phase-restricted triazine dyes (Procion Yellow HE-3G, Procion Olive MX-3G, Procion Navy MX-RB and Cibacron Blue F3G-A). This method was combined with fractional precipitation with poly(ethylene) glycol) and batchwise treatment with DEAE-cellulose. This rapid procedure gave an enzyme preparation with a specific activity of 0.92 kat per kg protein within 5 h. The affinity extraction step can easily be scaled up and the good recovery of ligand-poly(ethylene glycol) should make the process useful for larger amounts of enzyme. The technical possibilities are discussed.  相似文献   

8.
d-Glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate:NADP+ 1-oxidoreductase EC 1.1.1.49) has been purified from bakers' yeast by liquid-liquid extraction using phase-restricted triazine dyes (Procion Yellow HE-3G, Procion Olive MX-3G, Procion Navy MX-RB and Cibacron Blue F3G-A). This method was combined with fractional precipitation with poly(ethylene) glycol) and batchwise treatment with DEAE-cellulose. This rapid procedure gave an enzyme preparation with a specific activity of 0.92 kat per kg protein within 5 h. The affinity extraction step can easily be scaled up and the good recovery of ligand-poly(ethylene glycol) should make the process useful for larger amounts of enzyme. The technical possibilities are discussed.  相似文献   

9.
The graft modification of dextran with benzoyl groups has been studied. The factors that affect the degree of substitution of benzoyl dextran were investigated. Phase diagrams for aqueous two-phase systems composed of polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran have been determined. Phase separation was also obtained in aqueous solution of two benzoyl dextran polymers with different degrees of substitution. A four-phase system was obtained with a mixture of polyethylene glycol, dextran and two kinds of benzoyl dextrans. The partitioning of methylene blue and a Procion yellow HE-3G dextran derivative were studied in polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran two-phase systems and in systems of two benzoyl dextrans differing in degree of substitution. The proteins bovine serum albumin and glucose-6-phosphate dehydrogenase were partitioned in polyethylene glycol/benzoyl dextran aqueous two-phase systems and the effect of the degree of substitution of benzoyl dextran was studied. Chlorella pyrenoidosa, thylakoid membrane vesicles, plasma membrane vesicles and chloroplasts were partitioned in polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran two-phase systems, and in a polyethylene glycol/dextran/benzoyl dextran four-phase system.  相似文献   

10.
A new technique to speed up the phase separation of aqueous two-phase systems is described. The technique is based on the addition of magnetically susceptible additives (ferrofluids or iron oxide particles). In a magnetic field such additives will induce a faster phase separation. In one approach, dextran-stabilized ferrofluid was added to an aqueous two-phase system containing polyethylene glycol and dextran. The ferrofluid was totally partitioned to the dextran phase. After mixing of the two-phase system, it was possible to reduce the separation time by a factor of 35 by applying a magnetic field to the system. Another approach involved the use of 1-micron iron oxide particles instead of ferrofluid. In this case also, the phase-separation time was reduced, by a factor of about 70, when the system was placed in a magnetic field. The addition of ferrofluid and/or iron oxide particles was shown to have no influence on enzyme partitioning or on enzyme activity. The partitioning of chloroplasts, on the other hand, was influenced unless the ferrofluid used had been treated with epoxysilane. A column system comprising 15 magnetic separation stages was constructed and was used for semicontinuous separation of enzyme mixtures.  相似文献   

11.
1. 6-Phosphogluconate dehydrogenase from Bacillus stearothermophilus was purified approximately 260-fold on triazine-immobilized dye columns to a final specific activity of 54 mumol of NADP+ reduced/min per mg of protein and an overall yield of 62%. 2. An investigation of the capacities of different triazine dyes that inhibit 6-phosphogluconate dehydrogenase was carried out. Cibacron Blue F3G-A and Procion Red HE-3B strongly inhibited the enzyme in free solution and were therefore chosen as the ligands in the purification scheme. 3. KCl was found to be the most suitable agent for eluting 6-phosphogluconate dehydrogenase from Procion Red HE-3B-Sepharose 6B. NADP+ could specifically elute 6-phosphogluconate dehydrogenase from Cibacron Blue F3G-A-Sepharose 6B. 4. A study of the effect of temperature on the binding of pure 6-phosphogluconate dehydrogenase to both Cibacron Blue-Sepharose and Procion Red-Sepharose showed that the binding increased with an increase in temperature.  相似文献   

12.
In this study we show that proteins can be partitioned and separated in a novel aqueous two-phase system composed of only one polymer in water solution. This system represents an attractive alternative to traditional two-phase systems which uses either two polymers (e.g., PEG/dextran) or one polymer in high-salt concentration (e.g., PEG/salt). The polymer in the new system is a linear random copolymer composed of ethylene oxide and propylene oxide groups which has been hydrophobically modified with myristyl groups (C(14)H(29)) at both ends (HM-EOPO). This polymer thermoseparates in water, with a cloud point at 14 degrees C. The HM-EOPO polymer forms an aqueous two-phase system with a top phase composed of almost 100% water and a bottom phase composed of 5-9% HM-EOPO in water when separated at 17-30 degrees C. The copolymer is self-associating and forms micellar-like structures with a CMC at 12 microM (0.01%). The partitioning behavior of three proteins (lysozyme, bovine serum albumin, and apolipoprotein A-1) in water/HM-EOPO two-phase systems has been studied, as well as the effect of various ions, pH, and temperature on protein partitioning. The amphiphilic protein apolipoprotein A-1 was strongly partitioned to the HM-EOPO-rich phase within a broad-temperature range. The partitioning of hydrophobic proteins can be directed with addition of salt. Below the isoelectric point (pI) BSA was partitioned to the HM-EOPO-rich phase and above the pI to the water phase when NaClO(4)was added to the system. Lysozyme was directed to the HM-EOPO phase with NaClO(4), and to the water phase with Na-phosphate. The possibility to direct protein partitioning between water and copolymer phases shows that this system can be used for protein separations. This was tested on purification of apolipoprotein A-1 from human plasma and Escherichia coli extract. Apolipoprotein A-1 could be recovered in the HM-EOPO-rich phase and the majority of contaminating proteins in the water phase. By adding a new water/buffer phase at higher pH and with 100 mM NaClO(4), and raising the temperature for separation, the apolipoprotein A-1 could be back-extracted from the HM-EOPO phase into the new water phase. This novel system has a strong potential for use in biotechnical extractions as it uses only one polymer and can be operated at moderate temperatures and salt concentrations and furthermore, the copolymer can be recovered.  相似文献   

13.
The effects of low temperature (−18°C) on the stability and partitioning of some glycolytic enzymes within an aqueous two-phase system were studied. The enzymes were phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase present in a crude extract of bakers' yeast. The partitioning of pure phosphofructokinase, isolated from bakers' yeast, was also examined. The two-phase systems were composed of water, poly(ethylene glycol), dextran, and ethylene glycol and buffer. The influence on the partitioning of the presence of ethylene glycol, phenylmethylsulfonyl fluoride and poly(ethylene glycol)-bound Cibacron Blue F3G-A was investigated at −18, 0 and (in some cases) 20°C. The presence of ethylene glycol, phase polymers and low temperature stabilized all three enzyme activities. Cibacron Blue, an affinity ligand for phosphofructokinase, increased its partitioning into the upper phase with decreasing temperature. Depending on the conditions, various amounts of the enzymes were recovered at the interface, also in systems not containing ethylene glycol. The implications of the observed effects on the use of aqueous two-phase systems for the extraction and fractionation of proteins are discussed.  相似文献   

14.
1. Phosphofructokinase from baker's yeast is partitioned between the phases of an aqueous two-phase system, containing dextran (Mr = 500000) and poly(ethyleneglycol) (Mr = 6000), in favour of the dextran-rich phase. By covalent binding of the dye Cibacron blue F3G-A to poly(ethyleneglycol) the enzyme can be extracted to the phase rich in this polymer, i.e. affinity partitioning. 2. The affinity partitioning effect, measured as the logarithmic increase of the partition coefficient by introducing polymer-bound Cibacron blue, depends on several factors. The influence of dye-polymer concentration, polymer concentration, polymer molecular weight, kind of salt and salt concentration, pH and temperature has been studied. 3. The effect of ATP, ADP, AMP, ITP, fructose 1,6-bis-phosphate and fructose 6-phosphate show large differences in the binding strength of these substances to the Cibacron blue binding sites. AMP cannot compete with Cibacron blue while ATP is strongly competing. 4. The use of affinity partitioning for enzyme isolation and determination of ligand binding is discussed, as well as possible mechanisms concerning this type of liquid/liquid extraction.  相似文献   

15.
The effect of pH and salt concentration on the partitioning behavior of bovine serum albumin (BSA) and cytochrome c in an aqueous two-phase polymer system containing a novel pH-responsive copolymer that mimics the structure of proteins and poly(ethylene glycol) (PEG) was investigated. The two-phase system has low viscosity. Depending on pH and salt concentration, the cytochrome c was found to preferentially partition into the pH-responsive copolymer-rich (bottom) phase under all conditions of pH and salt concentrations considered in the study. This was caused by the attraction between the positively charged protein and negatively charged copolymer. BSA partitioning showed a more complex behavior and partitioned either to the PEG phase or copolymer phase depending on the pH and ionic strength. Extremely high partitioning levels (partition coefficient of 0.004) and very high separation ratios of the two proteins (up to 48) were recorded in the new systems. This was attributed to strong electrostatic interactions between the proteins and the charged copolymer.  相似文献   

16.
The agarose-coupled triazine dye Procion Red HE-3B has been demonstrated to be applicable as an affinity gel for the purification of five diverse hydrogenases, namely the soluble, NAD-specific and the membrane-bound hydrogenase of Alcaligenes eutrophus, the membrane-bound hydrogenase of the N2-fixing Alcaligenes latus, the reversible H2-evolving and the unidirectional H2-oxidizing hydrogenase of Clostridium pasteurianum. In the case of the soluble hydrogenase of A. eutrophus, chromatography on Procion Red-agarose even permitted the separation of inactive from active enzyme, thus yielding a 2-3-fold increase in specific activity. For the homogeneous enzyme preparation obtained after two column steps (Procion Red-agarose, DEAE-Sephacel), a specific activity of 121 mumol of H2 oxidized/min per mg of protein was determined. Kinetic studies with free Procion Red provided evidence that the diverse hydrogenases are competitively inhibited by the dye, each with respect to the electron carrier (NAD, Methylene Blue, Methyl Viologen), indicating a specific interaction between Procion Red and the catalytic centres of the enzymes. For the highly purified preparations of the soluble and the membrane-bound hydrogenase of A. eutrophus, in 50 mM-potassium phosphate, pH 7.0, Ki values for Procion Red of 103 and 19 microM have been determined.  相似文献   

17.
The green fluorescent protein GFPuv has been genetically engineered to investigate the influence of N-terminal tyrosine extensions in aqueous two-phase systems. Fusions in the N-terminus affected the protein expression, and tags containing three tyrosines and prolines influenced the expression favorably. This effect is probably due to changes in mRNA stability, because the amounts of corresponding mRNAs correlated with the amounts of GFPuv proteins. The partitioning was investigated in two different aqueous two-phase systems, a two-polymer system composed of EO30PO70/dextran and a PEG/salt system with potassium phosphate. Partitioning in the PEG/salt system generally was more favorable than in the EO30PO70/dextran system. Tags with three tyrosines resulted in higher partitioning toward the EO30PO70- and PEG-rich phases, respectively. The effect of adding proline residues to the tag was also investigated, and the partitioning effect of the tag was enhanced when prolines were included in the tags with three tyrosines. The best tyrosine tag, Y3P2, increased the partition coefficient 5 times in the PEG/salt system. Thermoseparation of the EO30PO70 phase allowed recovery of 83% Y3P2-GFPuv protein in a water phase.  相似文献   

18.
Malate dehydrogenase (MDH) and glucose 6-phosphate dehydrogenase (G6PDH) have been partially purified from preparations of homogenized yeast cells using Procion Yellow H-E3G and Procion Red H-E7B, respectively, immobilized on solid perfluoropolymer supports in an expanded bed. A series of pilot experiments were carried out in small packed beds using clarified homogenate to determine the optimal elution conditions for both MDH and G6PDH. Selective elution of MDH using NADH was effective but the yields obtained were dependent on the concentration of NADH used. Selective elution was found to be most effective when a low concentration of NaCl (0.1 M) was present. MDH could be recovered in 84% yield with a purification factor of 94 when this strategy was adopted. In the case of G6PDH, specific elution using NADP(+) was successful in purifying G6PDH 178-fold in 96% yield. The dynamic capacity of both affinity supports was estimated by frontal analysis, in an expanded bed with unclarified homogenate, and corresponded to 17 U MDH/mL of settled Procion Yellow H-E3G perfluoropolymer support and 7.7 U H6PDH/mL of settled Procion Red H-E7B perfluoropolymer support. Expanded bed affinity chromatography of MDH resulted in an eluted fraction containing 89% of the applied activity with a purification factor of 113. Expanded bed affinity chromatography of G6PDH resulted in an eluted fraction containing 84% of the applied activity with a purification factor of 172. With both enzymes, the overall recovery of enzyme activity was greater than 94%, showing that the expanded bed approach to purification was nondenaturing. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
Aqueous two-phase partitioning has been elaborated in order to improve the purification of alkaline phosphatase from calf intestine in larger scale. The laborious precipitation and centrifugation steps for the removal of the enzyme from the cell debris and from the bulk protein were replaced by this technique yielding a high recovery (88%) and a significant lower time requirement. For the preparation of 100.000 units (46 mg) of a homogeneous enzyme 2.0 kg of a system containing 200 g PEG 4000 and only 10 g dextran M 70 is necessary. Affinity partitioning in aqueous two-phase systems was used to screen 41 dyes for selecting a suitable ligand for the dye-ligand chromatography of the enzyme. In the case of alkaline phosphatase the results obtained by affinity partitioning coincide with the experimental requirements for the affinity chromatography of the enzyme. Procion Navy HE-R (Blue 171) exhibits a high affinity, selectivity and binding capacity for the enzyme compared with other dyes investigated. The purification procedure provided the same degree in purity (2200 U/mg) and yield (59%) if mucosa or chyme was applied as starting material. In the range of practical use the purified enzyme contains no detectable activities of DNAses (endonucleases) and DNA-nicking activities. The contamination with phosphodiesterase I (EC. 3.1.4.1.) is less than 0.01%.  相似文献   

20.
The enzyme glucose-6-phosphate dehydrogenase (G6PD) plays an important role in maintaining the level of NADPH and in producing pentose phosphates for nucleotide biosynthesis. It is also of great value as an analytical reagent, being used in various quantitative assays. In searching for new strategies to purify this enzyme, the partitioning of G6PD in two-phase aqueous mixed (nonionic/cationic) micellar systems was investigated both experimentally and theoretically. Our results indicate that the use of a two-phase aqueous mixed micellar system composed of the nonionic surfactant C(10)E(4) (n-decyl tetra(ethylene oxide)) and the cationic surfactant C(n)TAB (alkyltrimethylammonium bromide, n = 8, 10, or 12) can improve significantly the partitioning behavior of G6PD relative to that obtained in the two-phase aqueous C(10)E(4) micellar system. This improvement can be attributed to electrostatic attractions between the positively charged mixed (nonionic/cationic) micelles and the net negatively charged enzyme G6PD, resulting in the preferential partitioning of G6PD to the top, mixed micelle-rich phase of the two-phase aqueous mixed micellar systems. The effect of varying the cationic surfactant tail length (n = 8, 10, and 12) on the denaturation and partitioning behavior of G6PD in the C(10)E(4) /C(n)TAB/buffer system was investigated. It was found that C(8)TAB is the least denaturing to G6PD, followed by C(10)TAB and C(12)TAB. However, the C(10)E(4)/C(12)TAB/buffer system generated stronger electrostatic attractions with the net negatively charged enzyme G6PD than the C(10)E(4)/C(10)TAB/buffer and the C(10)E(4)/C(8)TAB/buffer systems, when using the same amount of cationic surfactant. Overall, the two-phase aqueous mixed (C(10)E(4)/C(10)TAB) micellar system yielded the highest G6PD partition coefficient of 7.7, with a G6PD yield in the top phase of 71%, providing the optimal balance between the denaturing effect and the electrostatic attractions for the three cationic surfactants examined. A recently developed theoretical framework to predict protein partition coefficients in two-phase aqueous mixed (nonionic/ionic) micellar systems was implemented, and the theoretically predicted G6PD partition coefficients were found to be in reasonable quantitative agreement with the experimentally measured ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号