首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Exposure to hypoxia (PO2 = 9 +/- 1 torr) increased human peripheral blood mononuclear cell production and secretion of interleukin-1 (IL-1)alpha, IL-1 beta, and tumor necrosis factor (TNF) percent of control = 190% for IL-1 alpha, p = 0.014; 219% for IL-1 beta, p = 0.014; and 243% for TNF, p = 0.037) following treatment with endotoxin (1 ng/ml). Hypoxia potentiated the increased production of these inflammatory cytokines at subthreshold levels of endotoxin with potentiation increasing at lower O2 concentrations. Hypoxia also increased cytokine production induced by the tumor promoter phorbol myristate acetate, suggesting a generalized biologic response. We conclude that hypoxia increases IL-1 and TNF production and speculate that this mechanism aggravates a variety of pathologic conditions involving endotoxin such as adult respiratory distress syndrome (ARDS), multiple organ failure, and septic shock.  相似文献   

2.
Induction of IL-6 release from human T cells by PAR-1 and PAR-2 agonists   总被引:4,自引:0,他引:4  
Proteinase-activated receptors (PAR) have been recognized as playing an important role in inflammation and immune response. However, little is known of the expression and function of PAR on human T cells. In this study, the expression of PAR on highly purified human T cells was determined and the secretion of IL-6 from cultured T cells in response to serine proteinases and agonist peptides of PAR was examined. The results showed that T cells express PAR-1, PAR-2 and PAR-3 proteins and genes. Thrombin, trypsin and tryptase, but not elastase, were able to stimulate concentration-dependent secretion of IL-6 from T cells following a 16 h incubation period. The specific inhibitors of thrombin, trypsin and tryptase inhibited the actions of these proteinases on T cells, indicating that the enzymatic activity is essential for their actions. Agonist peptides of PAR SFLLR-NH2, TFLLRN-NH2 and SLIGKV-NH2, but not TFRGAP-NH2, GYPGQV-NH2 and AYPGKF-NH2, are also capable of inducing IL-6 release from T cells. In conclusion, induction of IL-6 secretion from T cells by thrombin, trypsin and tryptase is probably through the activation of PAR, suggesting that serine proteinases are involved in the regulation of immune response of the body.  相似文献   

3.
4.
5.
Effects of Tumor Necrosis Factor (TNF), Interleukin-1 (IL-1), Interleukin-6 (IL-6) and Interferon-gamma (IFN-gamma) on the expression of Mn-superoxide dismutase (Mn-SOD) protein were investigated in human hepatoma cells, Hu-H1, which revealed resistance to the cytotoxicity of TNF and IL-1. Both TNF and IL-1 enhanced the Mn-SOD production to the level of 30- to 40-fold. IL-6 also increased the enzyme protein to 2- to 3-fold of the basal level without any cell proliferative effect. A specific antibody against IL-6 almost completely inhibited the induction of Mn-SOD. IL-6, as well as TNF and IL-1, appears to play some role in the Mn-SOD protein expression in human hepatoma cells.  相似文献   

6.
7.
The lymphokines IL-2 and IL-4 promoted the growth of human PHA-triggered T cells, but only IL-2 induced the production of IFN-gamma and TNF. The addition of purified monocytes strongly enhanced the production of IFN-gamma in IL-2-stimulated T cell cultures but did not influence the production of TNF or the level of T cell proliferation. The addition of IL-1 to T cells activated by PHA and optimal concentrations of IL-2 resulted in a strong induction of IFN-gamma production but had no influence on TNF production or T cell proliferation. IL-6 did not influence IFN-gamma or TNF production or T cell proliferation induced by PHA-IL-2 and did not modulate IL-1-induced IFN-gamma production. The production of IFN-gamma by CD4+ 45R+ Th cells was strongly enhanced by IL-1, whereas CD8+ T cells were less responsive to IL-1 and CD4+ 45R+ T cells were unresponsive to IL-1. We demonstrate, at the clonal level, that the optimal production of IFN-gamma by human Th cells requires both IL-1 and IL-2, whereas the production of TNF and T cell proliferation are induced by IL-2 alone. We suggest that IL-1 acts as a second signal for IFN-gamma production and that it may have an important function in regulating the pattern of lymphokines produced by T cell subsets during activation.  相似文献   

8.
In a previous study, we reported that cicaprost, a stable prostacyclin analogue can inhibit the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) from activated human peripheral mononuclear blood cells (PBMCs). Since interleukin (IL-4) and IL-13 have been shown to inhibit the release of cytokines from PBMCs we tested the hypothesis that prostacyclin in combination with IL-4 or IL-13 can act synergistically to modulate the release of IL-10, generally associated with anti-inflammatory properties, and the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-alpha). For this purpose, PBMCs were isolated over Ficoll, stimulated with lipopolysaccharide (LPS) and incubated in the presence of cicaprost, IL-4 or IL-13. There was a significant reduction in TNF-alpha as well as IL-10 secretion from LPS-stimulated PBMCs following incubation with IL-4 or IL-13. In contrast, cicaprost reduced the secretion of TNF-alpha but led to a slight enhancement of IL-10 release from PBMCs. When LPS-activated PBMCs were incubated in the presence of cicaprost and IL-4 or IL-13 there was a selective, synergistic inhibition of the TNF-alpha release which was not observed for IL-10. Thus, our data suggest that prostacyclin can synergize with cytokines to selectively inhibit the release of pro-inflammatory cytokines from PBMCs.  相似文献   

9.
10.
P48 induces tumor necrosis factor and IL-1 secretion by human monocytes   总被引:3,自引:0,他引:3  
Bacterial products are potent stimulators of TNF and IL-1 release, however, the factors that regulate cytokine secretion in the absence of bacterial products are not well defined. P48 is a cytokine recently identified in the supernatant of the human null cell leukemia cell line Reh, which induces differentiation and cytolytic activity in HL-60 cells. P48 has been purified to homogeneity and is distinct from TNF-alpha TNF-beta, IFN-gamma, IL-6, and macrophage CSF. In the present study we examined the ability of P48 to stimulate cytokine release by human peripheral blood monocytes. P48 stimulated the secretion of TNF and IL-1 in a dose-dependent manner. Priming the monocytes with IFN-gamma enhanced P48-induced cytokine release but was not a requirement for secretion. Cytokine secretion was in response to P48 and was not caused by endotoxin contamination. The cytokine-inducing activity of P48 was extremely sensitive to heat treatment but could not be eliminated by using polymyxin B. Polyclonal antisera to P48 completely blocked the cytokine-inducing activity. P48 may be an important new member of the cytokine network involved in the regulation of cytokine secretion by monocytes.  相似文献   

11.
Incubation of the human U937 histiocytic lymphoma cell line with granulocyte-macrophage colony stimulating factor (GM-CSF) rendered the cells responsive to induction of TNF by LPS. Treatment with IL-6 reduced TNF production in GM-CSF-primed U937 cells. The inhibitory effect was most pronounced (approximately equal to 80%) when IL-6 was added either along with GM-CSF or within the first 3 h of GM-CSF treatment. Both GM-CSF or IL-6 inhibited [3H]TdR uptake in U937 cells, and simultaneous treatment with GM-CSF and IL-6 resulted in an additive inhibitory effect on cell proliferation. However, the inhibition of TNF production could not be explained by the inhibitory effect of IL-6 on cell growth, nor was it due to a reduction in cell viability. An inhibition of TNF production by IL-6 was also demonstrated in cultured human peripheral blood monocytes. Treatment with IL-6 also resulted in a dose-dependent reduction of the 17-kDa TNF band revealed by SDS-PAGE after labeling monocytes with [35S]cysteine and immunoprecipitation with anti-TNF mAb. In addition, treatment with IL-6 resulted in a reduction of monocyte in vitro cytotoxicity for tumor target cells. Finally, in mice sensitized by the administration of Bacillus Calmette-Guérin, the injection of IL-6 significantly reduced the levels of TNF found in the serum upon challenge with LPS. Inasmuch as TNF is known to be an inducer of IL-6, the inhibitory action of IL-6 on TNF production may represent the negative arm of a regulatory circuit. The inhibitory action of IL-6 on TNF production is consistent with a predominantly antiinflammatory role of IL-6 in the intact organism.  相似文献   

12.
Human endothelial cells synthesize large amounts of platelet-activating factor (PAF) after 30-min treatment with recombinant tumor necrosis factor (TNF). Synthesis of PAF peaks at 4-6 h, whereas in endothelial cells treated with interleukin 1 alpha (IL-1) it peaks at 8-12 h. More than twice as much PAF is synthesized in response to optimal concentrations of TNF than in response to IL-1. However, PAF synthesis is stimulated by lower molar concentrations of IL-1 than TNF. About 30% of PAF produced in response to either TNF or IL-1 is released into the medium, whereas approximately 70% remains cell-associated. Experiments with labeled precursors show that PAF is synthesized de novo in response to TNF. This activity of TNF is inhibited by treating endothelial cells with the inhibitors of protein or RNA synthesis cycloheximide or actinomycin D. This finding may be explained by the observation that TNF induces in endothelial cells an acetyltransferase required for PAF synthesis. The induction of this enzymatic activity precedes the peak of PAF synthesis in TNF-treated cells. After prolonged incubation with either TNF or IL-1, endothelial cells no longer respond to the same monokine, but are still capable of producing PAF when treated with the other monokine. The finding that these monokines do not show reciprocal tachyphylaxis in endothelial cells may be explained by their binding to different receptors. In cells treated simultaneously with different concentrations of TNF and IL-1, PAF synthesis is stimulated in an additive rather than synergistic way. This suggests that PAF is synthesized by the same pathway in response to TNF or IL-1.  相似文献   

13.
Human alveolar macrophages (AM) are susceptible to infection with respiratory syncytial virus (RSV), but the infection is abortive after the initial cycles of virus replication. We have investigated if RSV infection of AM results in the production of cytokines TNF, IL-6, and IL-8, all of which may modulate inflammatory and immune responses to the virus, as well as may directly protect respiratory epithelial cells against spread of infection. Within 1 h after interaction with RSV, increased mRNA levels were found for all three cytokines. Peak expression of the mRNAs occurred at 3 to 6 h. The virus most effectively induced TNF mRNA expression greater than IL-6 mRNA greater than IL-8 mRNA, as compared to cytokine mRNA expression induced by bacterial endotoxin. Inactivated virus was almost as effective as live virus in inducing and maintaining increased IL-6 and IL-8 mRNA over 16 h, whereas live infectious RSV was necessary for maintaining TNF mRNA expression over the same time. Protein concentrations of the different cytokines in the supernatants of infected AM reflected the increased levels of mRNA in the cells. Despite the high levels of cytokines with possible antiviral activity (TNF and IL-6) in the AM supernatants, neither supernatants nor rTNF when added to bronchial epithelial cells protected them from infection with RSV. However, TNF, IL-1, and RSV, but not IL-6, induced IL-8 and IL-6 mRNA expression by the bronchial epithelial cells suggesting that cytokines produced by RSV-infected AM may be more important in modulating the inflammatory response in infection than directly interfering with virus infection/replication of airway epithelium.  相似文献   

14.
Unfractionated preparations of the proteins of human urine provided protection against the in vitro cytocidal effect of tumor necrosis factor (TNF). In certain cells, the proteins decreased expression of the receptors for TNF in a temperature-dependent way. In all cells examined, the proteins were found to interfere also with the binding of both TNF and interleukin-1 when applied directly into the binding assays. That effect could be observed in the cold, suggesting that it was independent of cellular metabolism. A protein which protects cells against the cytotoxicity of TNF was purified from human urine by chromatography on CM-Sepharose followed by high performance liquid chromatography on Mono Q and Mono S columns and reversed phase high performance liquid chromatography. This protein is a very minor constituent of normal urine, with an apparent molecular weight of about 27,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reducing and nonreducing conditions. Homogeneity of the purified protein was confirmed by microsequence analysis which revealed a single N-terminal sequence: Asp-Ser-Val-Cys-Pro-. The protein protected cells from TNF toxicity at concentrations of a few nanograms per ml and interfered with the binding of both TNF-alpha and TNF-beta to cells, when applied simultaneously with the cytokines. However, unlike crude preparations of the urinary proteins, the purified protein did not induce in cells a decrease in ability to bind TNF nor did it interfere with the binding of interleukin-1 to its receptor. Direct, specific binding to the protein of TNF-alpha and, to a lesser extent, also TNF-beta, but not of interleukin-1 nor interferon-gamma could be demonstrated. It is suggested that this protein blocks the function of TNF by competing for TNF with the TNF receptor and not by interacting with the target cell.  相似文献   

15.
Under endotoxin-free conditions, unstimulated human PBMC do not release TNF-alpha, as measured in a sensitive assay with 51Cr release in 6 h from actinomycin D-treated WEHI 164 cells. IFN-gamma alone at less than or equal to 10,000 U/ml is insufficient to elicit TNF-alpha release. Similarly, the lymphokine-rich supernatant of PBMC stimulated by allogeneic cells is also insufficient to induce TNF-alpha release in a short term assay. However, when PBMC are first primed with IFN-gamma for 48 h and then exposed to lymphokine supernatant for 6 h, effector cells within the PBMC population are triggered to express TNF-alpha-mediated cytotoxicity. All of the measured cytotoxicity is attributable to TNF-alpha because it could be abolished by a specific anti-TNF-alpha neutralizing mAb. Although IFN-gamma serves to prime PBMC in this assay system, it fails to trigger the release of TNF-alpha. Instead, a second lymphokine (provisionally termed "cytotoxicity triggering factor" (CTF) is required to induce TNF-alpha release from IFN-gamma-primed human PBMC. In kinetic studies, IFN-gamma priming was optimal when PBMC were exposed to IFN-gamma (150 U/ml) for 48 h. In contrast to the prolonged interval for priming, CTF need be present for 6 h or less for maximal induction of TNF-alpha-mediated cytotoxicity. In dose-response studies, IFN-gamma priming (48 h) required at least 4 U/ml and was complete with 20 to 100 U/ml. By using fully primed PBMC, the response to CTF followed a sigmoidal dose-response curve, which allowed the quantitation of CTF in half-maximal units. Activated Th lymphocytes constitute one cellular source for CTF. CTF is produced by cloned allorective T3+T4+T8-M1- Th cells after alloantigen stimulation, and also by nylon wool-purified T cells after stimulation with PMA and A23187 calcium ionophore. Unstimulated T cells do not release CTF. In physicochemical studies, CTF activity elutes from Sephadex G-100 as a major discrete peak of Mr 55 kDa and minor peaks of 14 kDa and greater than 150 kDa. On the basis of multiple criteria, CTF is distinguishable from several other cytokines: IFN-gamma, IL-1, IL-2, GM-CSF, MIF, CSF-1, TNF-alpha, and lymphotoxin (TNF-beta). We conclude that, by acting together, IFN-gamma and CTF provide a lymphokine pathway whereby Ag-responsive human Th cells induce the immunologic release of TNF-alpha from effector cells present in PBMC.  相似文献   

16.
To examine the role of human T-lymphotropic virus type 1 (HTLV-1) Tax1 in the development of neurological disease, we studied the effects of extracellular Tax1 on gene expression in NT2-N cells, postmitotic cells that share morphologic, phenotypic, and functional features with mature human primary neurons. Treatment with soluble HTLV-1 Tax1 resulted in the induction of tumor necrosis factor alpha (TNF-alpha) gene expression, as detected by reverse-transcribed PCR and by enzyme-linked immunosorbent assay. TNF-alpha induction was completely blocked by clearance with anti-Tax1 monoclonal antibodies. Furthermore, cells treated with either a mock bacterial extract or with lipopolysaccharide produced no detectable TNF-alpha. Synthesis of TNF-alpha in response to soluble Tax1 occurred in a dose-dependent fashion between 0.25 and 75 nM and peaked within 6 h of treatment. Interestingly, culturing NT2-N cells in the presence of soluble Tax1 for as little as 5 min was sufficient to result in TNF-alpha production, indicating that the induction of TNF-alpha in NT2-N does not require Tax1 to be continually present in the culture medium. Treatment of the undifferentiated parental embryonal carcinoma cell line NT2 with soluble Tax1 did not result in TNF-alpha synthesis, suggesting that differentiation-dependent, neuron-specific factors may be required. These results provide the first experimental evidence that neuronal cells are sensitive to HTLV-1 Tax1 as an extracellular cytokine, with a potential role in the pathology of HTLV-1-associated/tropical spastic paraparesis.  相似文献   

17.
The role of IL-6 in the antiproliferative effect of IL-1 for tumor cell lines was investigated using IL-1-sensitive cell lines. Human recombinant IL-1 alpha and IL-6 both inhibited the growth of an IL-1-sensitive cloned human melanoma cell line (A375-C6). However, IL-1 has greater maximum growth inhibitory activity than IL-6. Conditioned medium of the tumor cells that were treated with IL-1 contained IL-6 as determined by ELISA. Northern blot analysis revealed that IL-6 mRNA expression increased in IL-1-treated cells. In addition, antibody against human IL-6 neutralized about 50% of the antiproliferative effect of IL-1. The growth of an IL-1-resistant clone of A375 cells (A375-C5), which cannot be shown to express any detectable IL-1R, was inhibited by IL-6 to the same degree as A375-C6 cells. The A375-C5 cell line did not produce IL-6 or increase IL-6 mRNA after stimulation with IL-1. These results indicate that IL-6 mediates in part the antiproliferative effect of IL-1 on A375-C6 cells by acting as an autocrine antiproliferative factor. IL-1 also inhibited the growth of a malignant human mammary cell line (MDA-MB-415). IL-6 exhibited only slight growth inhibition in this cell line. Neither IL-6 production nor IL-6 mRNA expression was induced in this cell line by IL-1. Antibody against IL-6 did not neutralize the antiproliferative effect of IL-1. Therefore, for MDA-MB-415 cells IL-6 appeared not to be involved in the antiproliferative effect of IL-1. These results indicate that the antiproliferative effect of IL-1 involves at least two pathways, one IL-6 dependent and another IL-6 independent. The contribution of IL-6 to the antiproliferative effect of TNF was also examined. IL-6 appeared not to play a role in the antiproliferative effect of TNF in these cell lines.  相似文献   

18.
Regulation of lymphocyte tumor necrosis factor receptors by IL-2   总被引:8,自引:0,他引:8  
Activated lymphocytes are known to express TNF receptors. The precise stimuli involved in induction and regulation of these receptors have not been elucidated. Our findings demonstrate that IL-2, alone and in serum-free conditions, can trigger and regulate TNF receptor expression on normal lymphocytes. Flow cytometric analyses demonstrated that the receptor was rapidly induced on CD4, CD8, and CD16+ cells after IL-2 stimulation. Receptors increased with culture duration, became maximal between days 5 and 9, and were maintained for 18 to 20 days in the presence of IL-2. By using 125I-TNF and FITC-TNF binding, we present evidence that IL-2 concentration determines the magnitude of lymphoid TNF receptor expression--influencing both the percentage of TNF-positive cells within the population and the number of receptors/cell. Collectively, our results are persuasive for consideration of IL-2 as a central mediator in the regulation of lymphocyte TNF receptors.  相似文献   

19.
Tumor necrosis factor (TNF) and interleukin-1 (IL-1) enhanced the phosphorylation of identical cytosolic 65 kDa protein (P65 or l-plastin) and 74 kDa protein (P74) at serine residues in human peripheral blood mononuclear cells (PBMC). The isoelectric points of P65 and P74 were 5.6 and 4.7 to 5.0, respectively. The phosphorylation of these proteins increased with a few minutes and reached maximal levels of approximately 3 times the unstimulated levels by 10 minutes. The phosphorylation of P65 and P74 was extensively enhanced by a potent protein kinase C (PKC) activator, PMA. However, there was no translocation of PKC from cytosol to membrane in PBMC that was stimulated with either TNF or IL-1, which suggests that PKC does not participate in TNF or IL-1 signal transduction. cAMP dependent protein (PKA) activators, forskolin and PGE2, failed to increase the phosphorylation, which is in agreement with the data showing that neither TNF nor IL-1 increased cAMP levels in PBMC. These results suggest that induction of phosphorylation of P65 and P74 by TNF and IL-1 is not mediated by PKC and PKA but may be mediated by another protein kinase and result in overlapping of biological activities between TNF and IL-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号