首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The occurrence of pharmaceuticals, including antibacterial compounds, in the environment has been acknowledged as an emerging and troubling issue in environmental safety; their usage is constantly on the rise, and their effects on the environment are only partially understood. Such compounds can accumulate, contaminate the ecosystem, and contribute to the spreading of antibiotic resistance among bacteria, hindering human health. Bioluminescent Escherichia coli reporter strains, engineered to detect antibiotic compounds by fusing the promoter of the global regulator soxS to the Photorhabdus luminescens luxCDABE cassette, were further modified by altering their membrane permeability and efflux capabilities. This was accomplished by introducing several mutations in the efflux system (ΔemrE, ΔacrB, and ΔtolC) and by overexpressing OmpF, a porin located in the outer membrane that allows passive diffusion of molecules. Combinations of these alterations had a cumulative effect in lowering the detection threshold of several antibiotics, in some of the cases to concentrations reported from pharmaceutical-polluted environments.  相似文献   

2.
To improve the ability of flow cytometry to detect multidrug-resistant cells, we studied the extent to which cell volume heterogeneity accounts for the variance of intracellular daunorubicin (DNR) content. For P388 murine or HL-60 human leukemia cells exposed to DNR (1 micrograms/ml, 60 min), log intracellular DNR content varied in direct proportion to log cell volume measured by flow cytometry, with a correlation coefficient of .9. This relationship was confirmed by cell sorting based on intracellular DNR content with subsequent volume determination of the sorted cells. Normalization of intracellular DNR content for cell volume (thus obtaining intracellular DNR concentration) was accomplished by subtracting log cell volume from log intracellular DNR content for each cell. This resulted in a 34% decrease (range 23-58%) in standard deviation compared to DNR content measurements without volume normalization for all cell types tested. Following exposure to DNR (as above), intracellular DNR content of drug-sensitive P388 or HL-60 cells measured by flow cytometry was 12- and 8-fold greater than that of the multidrug-resistant sublines P388/ADR and HL-60/AR, respectively. However, because of the variance of intracellular DNR content, the predictive value of flow-cytometric determination of intracellular DNR content as a discriminant assay for detecting the frequency of drug-resistant cells in a mixed population was acceptable only when the frequency of resistant cells in the population exceeded 10%. In contrast, volume normalization of intracellular DNR content enhanced the ability of the flow-cytometric assay to discriminate resistant cells by 10-fold for P388 cells and 100-fold for HL-60 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
Pseudomonas aeruginosa encodes three types of xenobiotic efflux pumps, MexAB-OprM, MexCD-OprJ, and MexEF-OprN, which are regulated by the nalB, nfxB, and nfxC genes, respectively, and their high expression renders the cells resistant to multiple species of antibiotics. We evaluated the role of the outer membrane permeability barrier and the efflux pump in lowering the intracellular concentration of fluorescent probes. The wild-type, nalB, nfxB, and nfxC strains with an intact outer membrane showed equally high capability in draining out intracellular fluorescent dye, 2-(4-dimethylaminostyryl)-1-ethylpyridinium and ethidium bromide. When the outer membrane barrier was dismantled by the EDTA treatment, wild-type, nfxC, nfxB, and nalB strains showed significantly different levels of dye accumulation. The polymyxin B-treated cells showed an even more pronounced difference in dye accumulation among the nfxC, nfxB, and nalB mutants. We concluded from these results that the xenobiotic extrusion pumps interplay with the outer membrane permeability barrier in lowering the intracellular substrate concentration. Among three extrusion pumps in P. aeruginosa, MexAB-OprM was the most efficient, followed by MexCD-OprJ and MexEF-OprN pumps for the fluorescent dye extrusion.  相似文献   

5.
Summary As 15% of band 3 protein, the assumed chloride channel, is associated with spectrin, the major peripheral protein of a lattice located at the red cell membrane-cytosol interface, the present study was undertaken to evaluate whether a rearrangement of the lattice modifies the functional property of band 3 protein. Such a rearrangement was modulated by depletion of cell ATP and/or by accumulation of Ca2+ ions within the cell.ATP depletion induces an inhibition of the electroneutral one-for-one chloride exchanges. Neither the modification of red cell morphology due to ATP depletion (discocyte-echinocyte transformation) nor a direct effect of the decrease in internal ATP level can account for this inhibition. On the other hand, it seems reasonable to consider that inhibition is related to the changes in membrane protein organization (formation of heteropolymers) induced by the decrease in ATP level. But it does not appear that the degree of inhibition is modified when this altered assembly of membrane protein is stabilized by disulfide linkages.Accumulation of Ca2+ ions in the cell at a relatively low concentration (10m range) inhibits chloride exchange without apparent modification of the assembly of membrane proteins. This effect of calcium on chloride exchanges is speculatively denoted as a direct effect of calcium.Calcium loading of fresh red cells at higher concentrations (500 to 1000 m) obtained by use of the ionophore A23187 induces a very strong inhibition of chloride exchanges. In this case, inhibition can be reasonably accounted for by two simultaneous effects of calcium: a direct effect which explains half of the inhibition and an indirect effect due to the formation of membrane protein complexes stabilized by covalent crosslinkages (activation by Ca2+ ions of a transglutaminase).It is interesting to note that intracellular calcium, whatever the level, inhibits electroneutral exchanges of chloride but increases net chloride movements.  相似文献   

6.
7.
Summary The effect of the concentration of the central vacuolar sap on water permeability previously demonstrated onNitella internode (Tazawa and Kamiya 1966), has been further studied. By using a technique of vacuole perfusion the ionic concentration of the cell sap has been modified independently of its tonicity. Transcellular water permeability has been measured by means of a double-chamber osmometer.When the tonicities of artificial saps were adjusted to that of the natural cell sap, wide variations in the concentration of K+, Na+, or Ca++ in the vacuole did not bring about any change in the magnitude of water permeability. On the other hand, water permeability was strongly influenced by varying the tonicity of the vacuolar medium by addition of mannitol. It increased when the tonicity was lowered from the normal level, while it decreased when tonicity was heightened. Water permeability was also decreased by increase in the tonicity of the external medium.Analysis of the results showed that the specific resistance to water flow across the plasmalemma and the tonoplast in series (the reciprocal of the water permeability kp) was related to the osmotic pressures of the intracellular ( i) and the extracellular ( 0) medium by the empirical formula, l/kp=0.088 + 0.015 . + 0.0074 0. Thus, intra- and extracellular tonicities influence the water permeability of theNitella internode independently of each other. The decrease in water permeability by increase in tonicity of the intra- or extracellular medium may be explained in terms of the effect of these tonicities on hydration of the cell membranes.The water permeability ofLamprothamnium, a brackish water Characeae was only one fourth that ofNitella, a fresh water Characeae. The lower permeability inLamprothamnium may be accounted for in terms of the high tonicities of its cell sap and external medium.  相似文献   

8.
The mitochondrial inner membrane permeability transition (MPT) plays an important role in the pathophysiology of acute disorders of the central nervous systems, including ischemic and traumatic brain injury, and possibly in neurodegenerative diseases. Opening of the permeability transition pore (PTP) by a combination of abnormally elevated intramitochondrial Ca2+ and oxidative stress induces the collapse of transmembrane ion gradients, resulting in membrane depolarization and uncoupling of oxidative phosphorylation. This loss of ATP synthesis eventually results in cellular metabolic failure and necrotic cell death. Drugs, e.g., cyclosporin A, can inhibit the permeability transition through their interaction with the mitochondria-specific protein, cyclophilin D, and demonstrate neuroprotection in several animal models. These characteristics of the MPT were developed almost exclusively from experiments performed with young, mature rodents whereas the neuropathologies associated with the MPT are most prevalent in the elderly population. Some evidence indicates that the sensitivity of mitochondria to Ca2+-induced PTP opening is greater in the aged compared to the young mature brain; however, the basis for this difference is unknown. Based on knowledge of factors that regulate the MPT and on other comparisons between cells and mitochondria from young and old animals, several features may be important. These aging-related features include impaired neuronal Ca2+ homeostasis, increased oxidative stress, increased cyclophilin D protein levels, oxidative modification of the adenine nucleotide translocase and of cardiolipin, and changes in the levels of anti-death mitochondrial proteins, e.g., Bcl-2. The influence of aging on both the contribution of the MPT to neuropathology and the neuroprotective efficacy of MPT inhibitors is a substantial knowledge gap that requires extensive research at the subcellular, cellular, and animal model levels.  相似文献   

9.
Lysosomal permeability to potassium ions is an important property of the organelle. Influence of the membrane physical state on the potassium ion permeability of isolated lysosomes was assessed by measuring the membrane potential with bis(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol and monitoring the lysosomal proton leakage with p-nitrophenol. The membrane fluidity of lysosomes was modulated by treatment with membrane fluidizer benzyl alcohol and rigidifier cholesteryl hemisuccinate. Changes in the membrane order were examined by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. The measurements of membrane potential and proton leakage demonstrated that the permeability of lysosomes to potassium ions increased with rigidification of their membranes by cholesteryl hemisuccinate treatment at 37 degrees C, and decreased with fluidization of their membranes by benzyl alcohol treatment at 2 degrees C. The changes in ion permeability could be recovered by fluidizing the rigidified membranes and rigidifying the fluidized membranes. The results suggest that the physical states of lysosomal membranes play an important role in the regulation of their K(+) permeability.  相似文献   

10.
Regulation of intracellular magnesium by Mg2+ efflux   总被引:1,自引:0,他引:1  
Chicken erythrocytes were loaded with Mg2+ by incubation with the cation ionophore A 23187 in the presence of Mg2+. After removing A 23187 by intensive washing with serum albumin and reincubating the Mg2+-loaded cells, Mg2+ was transported out of the cells until the original Mg2+ content was achieved. The net Mg2+ efflux followed Michaelis-Menten-kinetics and was independent of extracellular and intracellular Ca2+ and calmodulin. The net Mg2+ efflux was not affected by adrenalin, isoproterenol, p-chloromercuribenzenesulfonate, ouabain and tetrodotoxin, but was inhibited by dicyclohexylcarbodiimide, KCN, iodoacetate, high extracellular concentrations of Mg2+, Mn2+ and when extracellular Na+ was substituted by choline or K+. The efflux of 1 Mg2+ was coupled with the uptake of 2 Na+. It is concluded that there exists an additional gating process at the inner cell surface becoming active only at increased concentrations of intracellular free Mg2+ regulating the exit of Mg2+ by the efflux system.  相似文献   

11.
The permeability properties of the lysosomal membrane.   总被引:16,自引:0,他引:16  
  相似文献   

12.
Метод выявления бактерий аэрозолей с помощью мембранных фильтры является описано. Приостановление, полученные растворения мембранных фильтров было потом культивируются. Мембранный фильтр вместе с захваченных микроорганизмов, была распущена в метиловый или ethylglycol. Было установлено, что метиловый или размыть ethylglycol решения не существенно сдерживать большинство бактерий. Результаты были сопоставлены с Результаты культуру микроорганизмов захваченные у воздуха impaction метод (с использованием типа S Chirana aeroscope) коэффициент между aeroscope и культуру после приостановления растворения мембранных фильтров время о 103.  相似文献   

13.
The exchange of water across biological membranes is of fundamental significance to both animal and plant physiology. Diffusional membrane permeability (P(d)) for the Xenopus oocyte, an important model system for water channel investigation, is typically calculated from intracellular water pre-exchange lifetime, cell volume, and cell surface area. There is debate, however, whether intracellular water motion affects water lifetime, and thereby P(d). Mathematical modeling of water transport is problematic because the intracellular water diffusion rate constant (D) for cells is usually unknown. The measured permeability may be referred to as the apparent diffusional permeability, P, to acknowledge this potential error. Herein, we show that magnetic resonance (MR) spectroscopy can be used to measure oocyte water exchange with greater temporal resolution and higher signal-to-noise ratio than other methods. MR imaging can be used to assess both oocyte geometry and intracellular water diffusion for the same single cells. MR imaging is used to confirm the dependence of intracellular water lifetime on intracellular diffusion. A model is presented to relate intracellular lifetime to true membrane diffusional permeability. True water diffusional permeability (2.7 +/- 0.4 microm/s) is shown to be 39 +/- 6% greater than apparent diffusional permeability for 8 oocytes. This discrepancy increases with cell size and permeability (such as after water channel expression) and decreases with increasing intracellular water D.  相似文献   

14.
Lead nitrate at concentration of 150 mg dm−3 inhibits root growth of Lupinus luteus seedlings by bout 20 %, which is accompanied by an increase of K+ leakage from the root cells. Non-denaturing isoelectric focusing in polyacrylamide slab gel has shown that lead stimulates the activity of most lipoxygenase isoenzymes and induces one additional isoenzyme with pI 6.9.The work was supported by the State in Committee for Scientific Research (KBN) grant no. 3PO6A 018 23.  相似文献   

15.
16.
17.
Mechanisms of cell death induced by toxins probably involve one or more processes such as inhibition of protein synthesis and impairment of plasma membrane integrity leading to an increase in membrane permeability. Since one of the possible actions of mastoparan, a cationic tetradecapeptide from wasp venom, is to perturb membrane phospholipids resulting in an increase in membrane permeability, we studied the effect of chemically synthesized mastoparan on lactate dehydrogenase release (LDH), ethidium bromide and fluorescein accumulation in Madin-Darby Canine Kidney (MDCK) cultured cells. Our results demonstrated that mastoparan induced cytosolic LDH release, ethidium bromide accumulation and intracellular fluorescein depletion in MDCK cells. Neomycin, a polycationic aminoglycoside, interacts with anionic polyphosphoinositides at the plasma membrane. Since both mastoparan and neomycin are cationic peptides and react with the negatively charged membrane phospholipids, we studied the interaction of these two peptides on membrane permeability. Our results demonstrated that neomycin inhibited mastoparan-induced LDH release, ethidium bromide accumulation and intracellular fluorescein depletion.Abbreviations LDH Lactate Dehydrogenase - MDCK Madin Darby Canine Kidney  相似文献   

18.
Sodium nitroprusside (SNP) is a nitric oxide (?NO) donor in vitro and in vivo. In this paper the time variation of the intracellular water proton nuclear magnetic resonance (NMR) effective relaxation time T'(2a) in SNP-treated human erythrocyte suspensions, containing 10 mM membrane impermeable paramagnetic MnCl2, has been measured. The observed T'(2a) time-course was analyzed in terms of the two mechanisms by which released ?NO affects T'(2a). These are, respectively, enhancement of the intracellular water proton intrinsic NMR relaxation rate 1/T(2a) by paramagnetism of ?NO subsequently bonded to iron atoms of intracellular deoxyhemoglobin, and suppression of diffusional water permeability P(d) as a consequence of nitrosylation of aquaporin-1 (AQP1) channel Cys189, either by direct reaction with ?NO or with one of the ?NO oxidation products, such as N2O3. The bound ?NO on the Cys189 thiol residue appears to impose a less efficient barrier to water permeation through AQP1 than the larger carboxyphenylmercuryl residue from p-chloromercuribenzoate. The effect of ?NO on P(d) is discussed in terms of NO-induced vasodilation.  相似文献   

19.
Tracer efflux measurements (86Rb+ and2NaNa+) were performed on resealed human erythrocyte ghosts at different intra- and extracellular NaCI concentrations. Using a modified Goldman equation the observed alterations of the rate constants could be explained by taking into account the transmembrane and surface potentials, at constant permeability coefficient . These results emphasize the importance of membrane surface potentials in triggering ion transport across biological membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号