首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The thioredoxin (Trx) system, comprising Trx, the selenoprotein thioredoxin reductase (TrxR), and NADPH, functions as an antioxidant system. Trx has various biological activities including growth control and anti‐apoptotic properties, and the Trx system offers a target for the development of drugs to treat and/or prevent cancer. We evaluated the role of TrxR inhibition in the release of arachidonic acid (AA), cell toxicity, and intracellular signaling pathways in L929 mouse fibrosarcoma cells. Treatment with 1‐chloro‐2,4‐dinitrobenzene (DNCB, an inhibitor of TrxR) under conditions involving limited inhibition of TrxR activity in cells, released AA before causing cytotoxicity. Treatment with an inhibitor of p38 kinase, a downstream enzyme of the apoptosis signal‐regulating kinase 1 pathway, and pyrrophenone (an inhibitor of α‐type cytosolic phospholipase A2, cPLA2α) partially but significantly decreased the DNCB‐induced release of AA and cell death. The responses were much weaker in cPLA2α knockdown L929 cells. Exogenously added AA showed cytotoxicity. DNCB increased intracellular reactive oxygen species (ROS) levels, and butylated hydroxyanisole (an antioxidant) reduced DNCB‐induced ROS formation and cell toxicity but not the phosphorylation of p38 kinase and release of AA. Auranofin, another inhibitor of TrxR having a different formula, released AA resulting in toxicity in L929 cells. DNCB caused the release of AA and cytotoxicity in A549 human lung carcinoma cells, and caused p38 kinase‐dependent toxicity in PC12 rat pheochromocytoma cells. Our data suggest that a dysfunctional Trx system triggers multiple signaling pathways, and that the AA released by cPLA2α‐dependent and ‐independent pathways is important to cytotoxicity. J. Cell. Physiol. 219: 606–616, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The mammalian thioredoxin (Trx) system, composed of Trx, Trx reductase (TrxR), and NADPH, is the most important thiol system involved in the redox control of signaling and regulatory proteins in apoptosis and cell proliferation. Here we addressed the inhibition of the Trx system by 13-hydroxy-15-oxo-zoapatlin (OZ), a nor-kaurane diterpene previously shown to possess proapoptotic potential and to cause cell cycle arrest in leukemia cells. OZ was found, by both biochemical and mass spectrometry-based approaches, to target Trx1 and TrxR in a cell-free system. In particular, the formation of reversible OZ adducts to Trx1 Cys35, Cys62, and Cys73 was demonstrated. We next showed that OZ efficiently inhibited Trx and TrxR catalytic activity in Molt4 cells. The occurrence of oxidative modifications of Trx molecules was assessed by "redox Western blot" analyses. OZ-mediated Trx oxidation resulted in apoptosis signaling kinase-1 release and activation of downstream JNK and p38 pathways. By means of specific inhibitors of these two stress-activated protein kinases, we demonstrated that the JNK pathway plays a major role in determining the apoptotic fate of OZ-exposed cells, whereas p38 activation seems to be involved mainly in OZ-induced G2/M block.  相似文献   

3.
Thioredoxin-2 (Trx2) is a mitochondrial protein-disulfide oxidoreductase essential for control of cell survival during mammalian embryonic development. This suggests that mitochondrial thioredoxin reductase-2 (TrxR2), responsible for reducing oxidized Trx2, may also be a key player in the regulation of mitochondria-dependent apoptosis. With this in mind, we investigated the effects of overexpression of TrxR2, Trx2, or both on mammalian cell responses to various apoptotic inducers. Stable transfectants of mouse Neuro2A cells were generated that overexpressed TrxR2 or an EGFP-TrxR2 fusion protein. EGFP-TrxR2 was enzymatically active and was localized in mitochondria. TrxR2 protein level and TrxR activity could be increased up to 6-fold in mitochondria. TrxR2 and EGFP-TrxR2 transfectants showed reduced growth rates as compared with control cells. This growth alteration was not due to cytotoxic effects nor related to changes in basal mitochondrial transmembrane potential (DeltaPsi(m)), reactive oxygen species production, or to other mitochondrial antioxidant components such as Trx2, peroxyredoxin-3, MnSOD, GPx1, and glutathione whose levels were not affected by increased TrxR2 activity. In response to various apoptotic inducers, the extent of DeltaPsi(m) dissipation, reactive oxygen species induction, caspase activation, and loss of viability were remarkably similar in TrxR2 and control transfectants. Excess TrxR2 did not prevent trichostatin A-mediated neuronal differentiation of Neuro2A cells nor did it protect them against beta-amyloid neurotoxicity. Neither massive glutathione depletion nor co-transfection of Trx2 and TrxR2 in Neuro2A (mouse), COS-7 (monkey), or HeLa (human) cells revealed any differential cellular resistance to prooxidant or non-oxidant apoptotic stimuli. Our results suggest that neither Trx2 nor TrxR2 gain of function modified the redox regulation of mitochondria-dependent apoptosis in these mammalian cells.  相似文献   

4.
The active site of thioredoxin-1 (Trx1) is oxidized in cells with increased reactive oxygen species (ROS) and is reduced by thioredoxin reductase-1 (TrxR1). The purpose of the present study was to determine the extent to which the redox state of Trx1 is sensitive to changes in these opposing reactions. Trx1 redox state and ROS generation were measured in cells exposed to the TrxR1 inhibitors aurothioglucose (ATG) and monomethylarsonous acid (MMA(III)) and in cells depleted of TrxR1 activity by siRNA knock down. The results showed that all three treatments inhibited TrxR1 activity to similar extents (90% inhibition), but that only MMA(III) exposure resulted in oxidation of Trx1. Similarly, ROS levels were elevated in response to MMA(III), but not in response to ATG or TrxR1 siRNA. Therefore, TrxR1 inhibition alone was not sufficient to oxidize Trx1, suggesting that Trx1-independent pathways should be considered when evaluating pharmacological and toxicological mechanisms involving TrxR1 inhibition.  相似文献   

5.
Chlorogenic acid (CGA) is one of the most abundant dietary polyphenols, possessing well-known antioxidant capacity. The present study is designed to observe the protection provided by CGA against acetaminophen (AP)-induced liver injury in mice in vivo and the underlying mechanisms engaged in this process. Serum transaminases analysis and liver histological evaluation demonstrated the protection of CGA against AP-induced liver injury. CGA treatment decreased the increased number of liver apoptotic cells induced by AP in a dose-dependent manner. CGA also inhibited AP-induced cleaved activation of caspase-3, 7. Moreover, CGA reversed AP-decreased liver reduced glutathione (GSH) levels, glutamate-cysteine ligase (GCL) and glutathione reductase activity. Further results showed that CGA increased mRNA and protein expression of the catalytic subunit of GCL (GCLC), thioredoxin (Trx) 1/2 and thioredoxin reductase (TrxR) 1. Furthermore, CGA abrogated AP-induced phospholyated activation of ERK1/2, c-Jun N-terminal kinase (JNK), p38 kinases and molecular signals upstream. The results of this study demonstrate that CGA counteracts AP-induced liver injury at various levels by preventing apoptosis and oxidative stress damage, and more specifically, both the GSH and Trx antioxidant systems and the mitogen-activated protein kinase (MAPK) signaling cascade appear to be engaged in this protective mechanism.  相似文献   

6.
The involvement of thioredoxin/thioredoxin reductase system has been investigated in cerebellar granule cells (CGCs), a cellular system in which neurons are induced in apoptosis by the physiological stimulus of lowering extracellular potassium. Clarifying the sequence of events that occur during apoptosis is a critical issue as it can lead to the identification of those key events that, if blocked, can slow down or reverse the death process. The results reported in this work show that TrxR is involved in the early phase of CGC apoptosis with an increase in activity that coincides with the increased expression of the TrxR1 isoform and guarantees the maintenance of adequate level of Trx in its reduced, active form. However, in late apoptosis, when about 50 % of cells are dead, partial proteolysis of TrxR1 by calpain occurs and the reduction of TrxR1 mRNA, together with the overall decrease in TrxR activity, contribute to increase the levels of the oxidized form of Trx. When the reduced form of Trx is externally added to apoptotic cultures, a significant reduction in cell death is achieved confirming that a well-functioning thioredoxin/thioredoxin reductase system is required for survival of CGCs.  相似文献   

7.
Thioredoxin reductase (TrxR), a component of the redox control system involving thioredoxin (Trx), is implicated in defense against oxidative stress, control of cell growth and proliferation, and regulation of apoptosis. In the present study a stable transfectant was made by introducing the vector pcDNA3.0 harboring the fission yeast TrxR gene into COS-7 African green monkey kidney fibroblast cells. The exogenous TrxR gene led to an increase in TrxR activity of up to 3.2-fold but did not affect glutathione (GSH) content, or glutaredoxin and caspase-3 activities. Levels of reactive oxygen species (ROS), but not those of nitric oxide (NO), were reduced. Conversely, 1-chloro-2,4-dinitrobezene (CDNB), an irreversible inhibitor of mammalian TrxR, enhanced ROS levels in the COS-7 cells. After treatment with hydrogen peroxide, the level of intracellular ROS was lower in the transfectants than in the vector control cells. These results confirm that TrxR is a crucial determinant of the level of cellular ROS during oxidative stress as well as in the normal state.  相似文献   

8.
Thioredoxin (Trx) and thioredoxin reductase (TrxR) plus NADPH, comprising the thioredoxin system, has a large number of functions in DNA synthesis, defense against oxidative stress and apoptosis or redox signaling with reference to many diseases. All three isoenzymes of mammalian TrxR contain an essential selenocysteine residue, which is the target of several drugs in cancer treatment or mercury intoxication. The cytosolic Trx1 acting as the cells’ protein disulfide reductase is itself reversibly redox regulated via three structural Cys residues. The evolution of mammalian Trx system compared to its prokaryotic counterparts may be an adaptation to the use of hydrogen peroxide and nitric oxide in redox regulation and signal transduction.  相似文献   

9.
Conversion of Death Signal into Survival Signal by Redox Signaling   总被引:2,自引:0,他引:2  
  相似文献   

10.
Reactive oxygen species, antioxidants, and the mammalian thioredoxin system.   总被引:31,自引:0,他引:31  
Reactive oxygen species (ROS) are known mediators of intracellular signaling cascades. Excessive production of ROS may, however, lead to oxidative stress, loss of cell function, and ultimately apoptosis or necrosis. A balance between oxidant and antioxidant intracellular systems is hence vital for cell function, regulation, and adaptation to diverse growth conditions. Thioredoxin reductase (TrxR) in conjunction with thioredoxin (Trx) is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In mammals, extracellular forms of Trx also have cytokine-like effects. Mammalian TrxR has a highly reactive active site selenocysteine residue resulting in a profound reductive capacity, reducing several substrates in addition to Trx. Due to the reactivity of TrxR, the enzyme is inhibited by many clinically used electrophilic compounds including nitrosoureas, aurothioglucose, platinum compounds, and retinoic acid derivatives. The properties of TrxR in combination with the functions of Trx position this system at the core of cellular thiol redox control and antioxidant defense. In this review, we focus on the reactions of the Trx system with ROS molecules and different cellular antioxidant enzymes. We summarize the TrxR-catalyzed regeneration of several antioxidant compounds, including ascorbic acid (vitamin C), selenium-containing substances, lipoic acid, and ubiquinone (Q10). We also discuss the general cellular effects of TrxR inhibition. Dinitrohalobenzenes constitute a unique class of immunostimulatory TrxR inhibitors and we consider the immunomodulatory effects of dinitrohalobenzene compounds in view of their reactions with the Trx system.  相似文献   

11.
Thioredoxin systems, composed of thioredoxin reductase (TrxR), thioredoxin (Trx) and NADPH, play important roles in maintaining cellular redox homeostasis and redox signaling. Recently the cytosolic Trx1 system has been shown to be a cellular target of arsenic containing compounds. To elucidate the relationship of the structure of arsenic compounds with their ability of inhibiting TrxR1 and Trx1, and cytotoxicity, we have investigated the reaction of Trx1 system with seven arsenic trithiolates: As(Cys)3, As(GS)3, As(Penicillamine)3, As(Mercaptoethanesulfonate)3, As(Mercaptopurine)3, As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3. The cytotoxicity of these arsenicals was consistent with their ability to inhibit TrxR1 in vitro and in cells. Unlike other arsenicals, As(Mercaptopurine)3 which did not show inhibitory effects on TrxR1 had very weak cytotoxicity, indicating that TrxR1 is a reliable drug target for arsenicals. Moreover, the two aromatic compounds As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3 showed stronger cytotoxicity than the others. As(2-mercaptopyridine)3 which selectively oxidized two structural cysteines (Cys62 and Cys69) in Trx1 showed mild improvement in cytotoxicity. As(2-mercaptopyridine N-oxide)3 oxidized all the Cys residues in Trx1, exhibiting the strongest cytotoxicity. Oxidation of Trx1 by As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3 affected electron transfer from NADPH and TrxR1 to peroxiredoxin 1 (Prx1), which could result in the reactive oxygen species elevation and trigger cell death process. These results suggest that oxidation of structural cysteine residues in Trx1 by aromatic group in TrxR1-targeting drugs may sensitize tumor cells to cell death, providing a novel approach to regulate cellular redox signaling and also a basis for rational design of new anticancer agents.  相似文献   

12.
Hypoxia-inducible factor-1 (HIF-1), consisting of two subunits, HIF-1alpha and HIF-1beta, is a key regulator for adaptation to low oxygen availability, i.e., hypoxia. Compared to the constitutively expressed HIF-1beta, HIF-1alpha is regulated by hypoxia but also under normoxia (21% O(2)) by several stimuli, including nitric oxide (NO). In this study, we present evidence that overexpression of mitochondrial-located thioredoxin 2 (Trx2) or thioredoxin reductase 2 (TrxR2) attenuated NO-evoked HIF-1alpha accumulation and transactivation of HIF-1 in HEK293 cells. In contrast, cytosolic-located thioredoxin 1 (Trx1) enhanced HIF-1alpha protein amount and activity under NO treatments. Taking into consideration that thioredoxins affect the synthesis of HIF-1alpha by altering Akt/mTOR signaling, we herein show that p42/44 mitogen-activated protein kinase and p70S6 kinase are involved. Moreover, intracellular ATP was increased in Trx1-overexpressing cells but reduced in cells overexpressing Trx2 or TrxR2, providing thus an understanding of how protein synthesis is regulated by thioredoxins.  相似文献   

13.
Metal toxicity often includes the generation of reactive oxygen species (ROS) and subsequent oxidative stress, but whether metals have different effects on the major thiol antioxidant systems is unknown. Here, we examine the effects of arsenic, cadmium, cesium, copper, iron, mercury, nickel, and zinc on glutathione (GSH), cytoplasmic thioredoxin-1 (Trx1), and mitochondrial thioredoxin-2 (Trx2) redox states. GSH/GSSG redox states were determined by HPLC, and Trx1 and Trx2 redox states were determined by Redox Western blot methods. Copper, iron, and nickel showed significant oxidation of GSH but relatively little oxidation of either Trx1 or Trx2. Arsenic, cadmium, and mercury showed little oxidation of GSH but significantly oxidized both Trx1 and Trx2. The magnitude of effects of arsenic, cadmium, and mercury was greater for the mitochondrial Trx2 (>60 mV) compared to the cytoplasmic Trx1 (20 to 40 mV). Apoptosis signal-regulating kinase 1 (ASK1) may be activated by two different pathways, one dependent upon GSH and glutaredoxin and the other independent of GSH and dependent upon thioredoxin. ASK1 activation and cell death were observed with metals that oxidized thioredoxins but not with metals that oxidized GSH. These findings show that metals have differential oxidative effects on the major thiol antioxidant systems and that activation of apoptosis may be associated with metal ions that oxidize thioredoxin and activate ASK1. The differential oxidation of the major thiol antioxidant systems by metal ions suggest that the distinct thiol/disulfide redox couples represented by GSH/GSSG and the thioredoxins may convey different levels of control in apoptotic and toxic signaling pathways.  相似文献   

14.
Understanding the dynamic relationship between components of a system or pathway at the individual cell level is a current challenge. To address this, we developed an approach that allows simultaneous tracking of several endogenous proteins of choice within individual living human cells. The approach is based on fluorescent tagging of proteins at their native locus by directed gene targeting. A fluorescent tag-encoding DNA is introduced as a new exon into the intronic region of the gene of interest, resulting in expression of a full-length fluorescently tagged protein. We used this approach to establish human cell lines simultaneously expressing two components of a major antioxidant defense system, thioredoxin 1 (Trx) and thioredoxin reductase 1 (TrxR1), labeled with CFP and YFP, respectively. We find that the distributions of both proteins between nuclear and cytoplasmic compartments were highly variable between cells. However, the two proteins did not vary independently of each other: protein levels of Trx and TrxR1 in both the whole cell and the nucleus were substantially correlated. We further find that in response to a stress-inducing drug (CPT), both Trx and TrxR1 accumulated in the nuclei in a manner that was highly temporally correlated. This accumulation considerably reduced cell-to-cell variability in nuclear content of both proteins, suggesting a uniform response of the thioredoxin system to stress. These results indicate that Trx and TrxR1 act in concert in response to stress in regard to both time course and variability. Thus, our approach provides an efficient tool for studying dynamic relationship between components of systems of interest at a single-cell level.  相似文献   

15.
Cellular redox balance is maintained by various antioxidative systems. Among those is the thioredoxin system, consisting of thioredoxin, thioredoxin reductase, and NADPH. In the present study, we examined the effects of caloric restriction (2 mo) on the expression of the cytosolic and mitochondrial thioredoxin system in skeletal muscle and heart of senescent and young rats. Mitochondrial thioredoxin reductase (TrxR2) is significantly reduced in aging skeletal and cardiac muscle and renormalized after caloric restriction, while the cytosolic isoform remains unchanged. Thioredoxins (mitochondrial Trx2, cytosolic Trx1) are not influenced by caloric restriction. In skeletal and cardiac muscle of young rats, caloric restriction has no effect on the expression of thioredoxins or thioredoxin reductases. Enforced reduction of TrxR2 (small interfering RNA) in myoblasts under exposure to ceramide or TNF-alpha causes a dramatic enhancement of nucleosomal DNA cleavage, caspase 9 activation, and mitochondrial reactive oxygen species release, together with reduced cell viability, while this TrxR2 reduction is without effect in unstimulated myoblasts under basal conditions. Oxidative stress in vitro (H2O2 in C2C12 myoblasts and myotubes) results in different changes: TrxR2, Trx2, and Trx1 are induced without alterations in the cytosolic thioredoxin reductase isoforms. Thus aging is associated with a TrxR2 reduction in skeletal muscle and heart, which enhances susceptibility to apoptotic stimuli but is renormalized after short-term caloric restriction. Exogenous oxidative stress does not result in these age-related changes of TrxR2.  相似文献   

16.
Inhalational exposure to hexavalent chromium (Cr(VI)) compounds (e.g., chromates) is of concern in many Cr-related industries and their surrounding environments. The bronchial epithelium is directly exposed to inhaled Cr(VI). Cr(VI) species gain easy access inside cells, where they are reduced to reactive Cr species, which may also contribute to the generation of reactive oxygen species. The thioredoxin (Trx) system promotes cell survival and has a major role in maintaining intracellular thiol redox balance. Previous studies with normal human bronchial epithelial cells (BEAS-2B) demonstrated that chromates cause dose- and time-dependent oxidation of Trx1 and Trx2. The Trx’s keep many intracellular proteins reduced, including the peroxiredoxins (Prx’s). Prx1 (cytosolic) and Prx3 (mitochondrial) were oxidized by Cr(VI) treatments that oxidized all, or nearly all, of the respective Trx’s. Prx oxidation is therefore probably the result of a lack of reducing equivalents from Trx. Trx reductases (TrxR’s) keep the Trx’s largely in the reduced state. Cr(VI) caused pronounced inhibition of TrxR, but the levels of TrxR protein remained unchanged. The inhibition of TrxR was not reversed by removal of residual Cr(VI) or by NADPH, the endogenous electron donor for TrxR. In contrast, the oxidation of Trx1, Trx2, and Prx3 was reversible by disulfide reductants. Prolonged inhibition of TrxR in Cr(VI)-treated cells might contribute to the sustained oxidation of Trx’s and Prx’s. Reduced Trx binds to an N-terminal domain of apoptosis signaling kinase (ASK1), keeping ASK1 inactive. Cr(VI) treatments that significantly oxidized Trx1 resulted in pronounced dissociation of Trx1 from ASK1. Overall, the effects of Cr(VI) on the redox state and function of the Trx’s, Prx’s, and TrxR in the bronchial epithelium could have important implications for redox-sensitive cell signaling and tolerance of oxidant insults.  相似文献   

17.
18.
19.
Thioredoxin (Trx) and thioredoxin reductase (TrxR) function as antioxidant and anti-apoptotic proteins, which are often up-regulated in drug-resistant cancer cells. (-)-epigallocatechin-3-gallate (EGCG) is a naturally occurring antioxidant in green tea, but also exhibits prooxidant and apoptosis-inducing properties. We have previously showed a linkage between EGCG-induced inactivation of TrxR and decreased cell survival, revealing TrxR as a new target of EGCG. However, the molecular events underlying the importance of Trx/TrxR in EGCG-induced cytotoxicity remain unclear. Here, we show that the crosstalk between EGCG and Trx/TrxR occurred in a redox-dependent manner, and EGCG induced inactivation of Trx/TrxR in parallel with increased ROS levels in HeLa cells. Moreover, EGCG displayed great reactivity with Cys/Sec residues that have low pK(a) values. The structure of EGCG suggests that its quinone form would readily react with thiolate and selenolate nucleophiles. Using mass spectrometry, we have demonstrated the formation of EGCG-Trx1 (Cys(32)) and EGCG-TrxR (Cys/Sec) conjugates, confirming that EGCG quinone specifically conjugates with active-site Cys(32) in Trx or C-terminal Cys/Selenocysteine (Sec) couple in TrxR under conditions where Trx/TrxR are reduced. Non-reduced form of Trx/TrxR could escape from EGCG inhibition. These data reveal a potential mechanism for enhancing EGCG-induced cancer cell death by the NADPH-dependent reduction of Trx/TrxR.  相似文献   

20.
Molecular oxygen is key to aerobic life but is also converted into cytotoxic byproducts referred to as reactive oxygen species (ROS). Intracellular defense systems that protect cells from ROS-induced damage include glutathione reductase (GR), thioredoxin reductase (TrxR), superoxide dismutase (Sod), and catalase (Cat). Sod and Cat constitute an evolutionary conserved ROS defense system against superoxide; Sod converts superoxide anions to H(2)O(2), and Cat prevents free hydroxyl radical formation by breaking down H(2)O(2) into oxygen and water. As a consequence, they are important effectors in the life span determination of the fly Drosophila. ROS defense by TrxR and GR is more indirect. They transfer reducing equivalents from NADPH to thioredoxin (Trx) and glutathione disulfide (GSSG), respectively, resulting in Trx(SH)(2) and glutathione (GSH), which act as effective intracellular antioxidants. TrxR and GR were found to be molecularly conserved. However, the single GR homolog of Drosophila specifies TrxR activity, which compensates for the absence of a true GR system for recycling GSH. We show that TrxR null mutations reduce the capacity to adequately protect cells from cytotoxic damage, resulting in larval death, whereas mutations causing reduced TrxR activity affect pupal eclosion and cause a severe reduction of the adult life span. We also provide genetic evidence for a functional interaction between TrxR, Sod1, and Cat, indicating that the burden of ROS metabolism in Drosophila is shared by the two defense systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号