首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
To assess the effects of prenatal exposure to androgen on adult aggressiveness in mice, pregnant mice were given injections of 1.5 mg testosterone propionate (TP) or oil from Days 12 to 16 of pregnancy. All offspring were gonadectomized on the day of birth. Neonatal treatment occurred on the day following birth and consisted of one-half of the animals from each prenatal treatment group being injected with 100 μg TP while the other half were injected with oil, yielding four Prenatal/Neonatal treatment groups for each sex. On postnatal Day 60, all offspring were given subcutaneous implants of encapsulated testosterone (T) and tested for 10 min every other day against a male opponent until aggression was observed. Female offspring of TP-treated mothers were indistinguishable from males on external examination at birth. The duration of exposure to T required to induce aggression provides an index of the sensitivity of the neural substrate to T. When arranged from the most sensitive to the least sensitive to the aggression inducing action of T, the four Prenatal/Neonatal treatment groups of females were significantly different from each other: Group TP/TP > Group OIL/TP > Group TP/OIL > Group OIL/OIL. A similar pattern was observed for the male offspring. There were no differences in the proportion of animals per group that exhibited aggression (virtually all animals fought) or the intensity of aggression once exhibited. The results demonstrate that morphological and behavioral masculinization can occur in response to exposure to androgen during prenatal as well as neonatal life in mice.  相似文献   

2.
The influence of progesterone on sexual and aggressive behaviors during aggressive encounters was investigated in pairs of TP-treated male and female rats. Gonadectomized females, chronically injected with testosterone propionate (TP), showed low but consistent levels of feminine sexual behavior which alternated with aggression. Progesterone when given in addition to TP facilitated receptive and proceptive behaviors, but reduced levels of aggression. In TP-treated males, levels of aggression were the same as observed in TP-treated females. However, TP-treated males seldomly showed sexual behavior during aggressive encounters and additional treatment with progesterone did not affect their behavior. After the aggression tests, animals were tested in a social preference test in which an ovariectomized female cage mate and the opponent from the aggressive encounter served as incentives. Positive correlations between levels of aggression and social preference for an opponent were found in both sexes, although correlations only reached statistical significance when progesterone was given in addition to TP. These correlations were found in both sexes, despite the fact that group analysis revealed pronounced sex differences in social preference: males preferred to spend their time near ovariectomized female cage mates, whereas females divided their time equally among female cage mates and opponents.  相似文献   

3.
The role of neonatal testosterone in the development of copulatory behavior was examined in an insectivore, the musk shrew (Suncus murinus). Female musk shrews were treated with testosterone propionate (TP) for the first 5 days of life and then tested in adulthood for either female or male-like copulatory behavior. Early TP had a masculinizing effect; neonatally treated animals mounted a stimulus female more frequently, and with shorter latencies, in response to adult testosterone treatment than did control females. Neonatally androgenized females also showed deficits in female sexual behavior; few received ejaculations from stud males. This difference was likely caused by increased aggression exhibited by the neonatally TP-treated females toward males. In turn, female aggression decreased efficiency of male partners' intromission attempts. Early TP treatments also caused structural abnormalities in the ovaries, but did not effect their capacity to ovulate in response to either gonadotropin-releasing hormone or human chorionic gonadotropin injection. In sum, exposure to TP during development augmented display of male-like behavior in females and had subtle deleterious effects on expression of feminine behavior.  相似文献   

4.
Two experiments were done to compare the effects of neonatal exposure to testosterone and its major metabolites, dihydrotestosterone (DHT) and estradiol (E2), on the development of sex differences in open-field behavior in the rat. In Experiment 1 female rats administered either testosterone propionate (TP), DHT, or estradiol benzoate (EB) were found as adults to have low activity scores, more typical of adult males, when compared to the high scores of oil-treated females. In Experiment 2 the adult open-field behavior of female rats treated neonatally with testosterone or the metabolites was compared to that of male rats treated from Day 1 to 10 of life with the aromatizing enzyme inhibitor, androst-1,4,6-triene-3,17-dione (ATD). These same animals were later tested for lordotic behavior after gonadectomy and priming with EB and progesterone. All male animals and female animals exposed neonatally to testosterone or to either of the metabolites had suppressed open-field activity scores compared to oil-treated females. However, the lordotic behavior of females exposed to DHT and of males exposed to ATD was not defeminized and was comparable to that of oil-treated females. These observations were discussed in terms of a role for the androgenic actions of testosterone in establishing sex differences in nonreproductive behavior in the rat.  相似文献   

5.
Anabolic androgenic steroids (AAS) have been linked to indiscriminant and unprovoked aggression and violence. We employed a brief tail pinch to examine the effects of different AAS on intermale aggression in gonadally intact male rats in response to a mild physical provocation. Animals received 5 mg/kg testosterone propionate (TP), nandrolone (ND), or stanozolol (ST) 5 days/week. Controls received vehicle injections. After 12 weeks, rats were tested for aggression while treatments continued. Animals were paired with either gonadally intact or castrated opponents and were tested in the subject rat's home cage, the opponents's home cage, and a neutral cage. Aggression was tested during tail pinch of the subject rat and during tail pinch of the opponent rat. In TP-treated males, tail pinch significantly enhanced aggression in all social and environmental conditions compared to intact controls. TP treatment also significantly enhanced aggression when the opponents were tail pinched. Tail pinch did not increase aggression in ND-treated males, and aggression was significantly lower than controls in ST-treated males. As expected, cell nuclear androgen receptor binding was significantly elevated by the high dose of TP. Our results show that while AAS alone does not induce the indiscriminate and unprovoked aggression characteristic of 'roid rage, TP heightens the animals sensitivity to  相似文献   

6.
A hormonal basis for sex differences in the self-grooming of rats   总被引:1,自引:0,他引:1  
The self-grooming behavior of prepubescent male and female rats is described. Sex differences were observed in components of grooming addressed to the genitals, but not in other aspects of grooming. A hormonal basis for the sex difference was examined in two experiments. When females were injected with testosterone propionate (TP) on the day of birth, their subsequent grooming was found to be no different from that of control-treated females. However, males and females gonadectomized at weaning and treated daily with TP each performed significantly more genital self-grooming than oil-treated controls. There were no sex differences in gonadectomized, oil-treated rats, and sex differences in response to TP were limited to greater responsiveness of females to a 50-micrograms, but not 200-micrograms, TP dose. These results lead to the conclusion that sex differences in self-grooming can be accounted for primarily by differences in testosterone availability during the peripubertal period.  相似文献   

7.
Normal female hamsters display lordosis after testosterone propionate (TP) plus progesterone (P) treatments. Such effect is probably mediated through aromatization of testosterone (T) into estradiol. If so, then an aromatase inhibitor (ATD) or an estrogen antagonist (tamoxifen, TAM) should be able to block the activational effect of T on lordosis. To test this hypothesis, 48 ovariectomized female hamsters were assigned into six groups which, according to treatments received, were ATD + TP, TAM + TP, OIL + TP, ATD + EB (estradiol benzoate), TAM + EB, and OIL + EB groups. The groups received assigned treatments for 2 days and were injected with P on the third day. Five minutes of behavior test was conducted 4 hr after P injection. The OIL + TP, OIL + EB, and ATD + EB groups all had averaged total lordosis duration (TLD) longer than 200 sec. The TLD of the TAM + EB group was only 117 sec. The ATD + TP and TAM + TP groups showed almost no lordosis. The results showed that the estrogen antagonist (TAM) impaired lordosis no matter whether the animals were primed with TP or EB, but the aromatase inhibitor (ATD) blocked lordosis only in TP primed females. It is concluded that the aromatization of T to estrogen is required for testosterone activation of lordosis in female hamsters.  相似文献   

8.
This study investigated the androgen specificity of aggressive and sexual behavior in the lizard Anolis carolinensis and the capacity of females of this species to exhibit male-typical copulation. Gonadectomized males and females were injected with testosterone propionate (TP) or dihydrotestosterone propionate (DHTP) or were implanted with Silastic tubing containing TP or DHTP. Either TP or DHTP activated male-typical sexual behavior in both males and females and activated aggressive behavior in males; DHTP activated aggressive behavior in females. Thus conversion of androgen to estrogen is not essential for these behavior patterns, and endogenous dihydrotestosterone may be important. TP but not DHTP stimulated receptivity in females, suggesting that conversion of testosterone to estrogen may underlie TP-stimulated receptivity. Females treated with TP did not differ from males in their display of male-typical courtship, neck-clasping, and intromission.  相似文献   

9.
Contrary to the results of most other mammalian species studied thus far, castration in infancy or adulthood has been shown to increase the display of intermale aggression in gerbils tested as adults in dyadic encounters. Males castrated in adulthood were divided into two groups: one that received testosterone propionate (TP) treatment and one that did not. A third group of adult males were sham-operated. Infant subjects were either sham-operated or castrated and tested once without and once with TP. Both infant and adult castrates that received no TP treatment demonstrated significantly more fighting behavior than did sham-operates. Adult subjects treated with TP show significantly less aggression than castrates that did not receive TP. Ovariectomized females were also divided into a TP and no-TP group. Females treated with TP showed significantly less aggression than those that had no treatment showing that TP inhibits aggression in both males and females gonadectomized in adulthood. The results are assessed in terms of the importance of perinatal androgen to “organize” adult behavior patterns.  相似文献   

10.
Groups of female TMD rats were treated either with estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), testosterone propionate (TP), EB + DHTP (EB/DHTP), or with oil. These groups of females were tested for social aggression and for masculine and feminine sexual behavior. In addition, patterns of masculine and feminine sexual responses during the aggressive encounters, were investigated. TP-treated females of the same strain were used as opponents in the tests for aggression. In accordance with previous results, EB did not activate aggression whereas TP treatment resulted in a significant increase in aggression in females. Aggressive responses were activated by adding DHTP to EB, up to levels equal to those activated by TP. Sexual responses were observed in the tests for aggression as well as in tests for sexual behavior. The results indicated that feminine and masculine sexual responses were affected significantly by hormonal treatment. Mounting behavior in the test for aggression was activated by TP and by EB/DHTP. Lordosis and proceptive responses were inhibited in these groups as compared to EB-treated females, both in tests for aggression and in tests for sexual behavior. The results are consistent with the idea that dihydrotestosterone inhibits feminine and activates masculine sexual activity. The results also indicate that EB and DHTP synergistically activate aggression.  相似文献   

11.
Groups of sexually inexperienced adult Clun Forest sheep (four animals per group) which had been castrated on the day after birth received one of the following treatments: testosterone propionate (TP, 20 mg/day); estradiol dipropionate (ODP, 2 mg/day); 19-hydroxy-17, 19-dipropionate (19HTP, 20 mg/day); dihydrotestosterone propionate (DHTP, 20 mg/day); or arachis oil vehicle (OIL). Treatments were in the form of sc injections given 5 days/week over a 6-week period during which time individual animals were observed in 18 tests for sexual behavior. The stimulus females used were ovariectomized ewes maintained in a state of continuous receptivity by daily injections of 15 mg of TP. Various measures of sexual and aggressive behavior were recorded during each test. Mounting was induced mainly in animals in the TP group and to a lesser extent in those receiving ODP. The extent to which precopulatory courtship was induced followed the order TP > ODP > 19HTP. Animals treated with DHTP or OIL showed negligible sexual activity.  相似文献   

12.
Four experiments were performed in order to evaluate further the hypothesis that androgen must be aromatized to estrogen for the activation of masculine sexual behavior in the male rat. In Experiment 1 it was found that the anti-estrogen MER-25 failed to disrupt mounting behavior in castrated males which simultaneously received testosterone propionate (TP). However, in Experiment 2 it was found that MER-25 as weil as 3β-androstanediol effectively activated masculine behavior in castrated males treated simultaneously with dihydrotestosterone propionate. Both MER-25 and 3β-androstanediol had previously been shown to display an affinity for cytoplasmic estradiol-17β receptors present in male rat anterior hypothalamus. In Experiments 3 and 4, performed with ovariectomized females, it was found that whereas MER-25 antagonized the stimulatory effect of estradiol benzoate (EB) on lordosis behavior, 3β-androstanediol did not. In addition, 5α-dihydrotestosterone and 3α-androstanediol, two compounds which had previously been shown to have almost no affinity for estradiol-17β receptors in the hypothalamus, both inhibited the stimulatory effect of EB on lordosis. It is concluded that the fact that anti-estrogens suppress lordosis induced in females with either EB or TP, but fail to disrupt TP-induced mounting behavior in male rats does not argue against the aromatization hypothesis for masculine sexual behavior.  相似文献   

13.
Sexually experienced male deer mice (Peromyscus maniculatus bairdi) were castrated and tested for male sexual behavior. In the weeks following castration male sexual behavior decreased. Ejaculation disappeared first, followed by intromission and, finally, mounting. Castrated males failing to copulate were assigned to one of four treatment groups: 200 μg testosterone propionate (TP); 200 μg dihydrotestosterone propionate (DHTP); 2 μg estradiol benzoate (EB); or sesame oil (OIL). TP and DHTP were equally effective in restoring the complete male sexual behavior pattern. In contrast, EB was effective in stimulating mounting and minimally effective in stimulating intromissions (vaginal penetration), but did not stimulate ejaculatory responses. These data indicate that in deer mice testosterone may mediate male sexual behavior through reduction to dihydrotestosterone rather than through aromatization to estradiol.  相似文献   

14.
The objective of the present report was to investigate the influence of androgen in the neonatal period on the development of ejaculatory and postejaculatory behavior. At birth, male rats were either castrated (neonatally castrated males), implanted with a Silastic tube of the aromatase inhibitor androsta-1,4,6-triene-3,17-dione for the first 10 days (ATD males), or left untreated (normal males). Female rats were either injected with 0.5 mg testosterone propionate (TP) on Days 1 (day of birth) and 2 (androgenized females) or left untreated (normal females). All gonadally intact animals were castrated at 60 days of age. Following TP administration, all animals were tested for ejaculatory and postejaculatory behavior under both shock and nonshock conditions. All animals were capable of showing the intromission pattern; however, the ejaculatory pattern was exhibited regularly only by those animals exposed to androgen at birth (normal males, androgenized females, and ATD males). The normal males required fewer intromissions to achieve ejaculation than the other two groups exhibiting this reflex. This result is discussed in terms of peripheral genital stimulation deficits and the differentiation of neural tissue responsible for masculine copulatory behavior. Androgenized females and ATD males displayed a refractory period, characterized by 22-kHz vocalizations, equal to or longer than that found in normal males. These results indicate that defeminization is not necessary for the display of normal ejaculatory and postejaculatory behavior.  相似文献   

15.
Sex differences, laterality, and hormonal regulation of androgen receptor (AR) immunoreactivity in rat hippocampal CA1 pyramidal cells were examined using the PG21 antibody. Adult male rats were either castrated or sham-operated at least 2 weeks prior to sacrifice. Gonadally intact females were sacrificed on the day of proestrus. Animals received an injection of either testosterone propionate (TP) or vehicle 2 h prior to sacrifice. Within CA1, both the intensity of staining and the number of AR+ cells were assessed. AR immunostaining was detected in all the groups with marked variation among them. The overall ranking of staining intensity was: gonadally intact males > females given TP > castrated males given TP > females > castrated males given vehicle. The number of AR+cells within subregions of CA1 showed the same basic pattern: among control-treated animals, gonadally intact males have more than females, but castrated males have the least, and acute TP treatment increases the number in both sexes. The increased level of AR immunoreactivity in CA1 of castrated males following acute TP treatment suggests that testicular androgens in adulthood normally increase AR immunoreactivity there, producing a sex difference favoring males in gonadally intact animals. We also found a higher number of AR+ CA1 cells on the left than on the right, but only in gonadally intact males and in females given TP. These results suggest that a laterality of AR distribution in the rat hippocampus may lead to lateralities in hippocampal structure and function.  相似文献   

16.
Motoneurons in the spinal nucleus of the bulbocavernosus (SNB) innervate the perineal muscles, bulbocavernosus (BC), and levator ani (LA). Testosterone regulates the survival of SNB motoneurons and BC/LA muscles during perinatal life. Previous findings suggest that effects of testosterone on this system may be mediated by trophic factors—in particular, by a factor acting through the ciliary neurotrophic factor α‐receptor (CNTFRα). To test the role of CNTFRα in the response of the developing SNB system to testosterone, CNTFRα +/+ and −/− mice were treated with testosterone propionate (TP) or oil during late embryonic development. BC/LA muscle size and SNB motoneuron number were evaluated on the day of birth. Large sex differences in BC and LA muscle size were present in newborn mice of both genotypes, but muscle volumes were reduced in CNTFRα −/− animals relative to same‐sex, wild‐type controls. Prenatal testosterone treatment completely eliminated the sex difference in BC/LA muscle size in wild‐type animals, and eliminated the effect of the CNTFRα gene deletion on muscle size in males. However, the effect of TP treatment on BC and LA muscle sizes was blunted in CNTFRα −/− females. SNB motoneuron number was sexually dimorphic in oil‐treated, wild‐type mice. In contrast, there was no sex difference in SNB motoneuron number in oil‐treated, CNTFRα knockout mice. Prenatal treatment with testosterone did not increase SNB motoneuron number in CNTFRα −/− mice, but also did not significantly increase SNB motoneuron number in newborn wild‐type animals. These findings confirm the absence of a sex difference in SNB motoneuron number in CNTFRα −/− mice. Moreover, the CNTFRα gene deletion influences perineal muscle development and the response of the perineal muscles to testosterone. Prenatal TP treatment of CNTFRα −/− males overcomes the effects of the gene deletion on the BC and LA muscles without a concomitant effect on SNB motoneuron number. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 317–325, 1999  相似文献   

17.
The aggression of adult male Long-Evans rats (Rattus norvegicus), toward males of the same strain, was tested before and after a 1-week period of cohabitation with a pair of intact females, ovariectomized females, or intact males, comparable to the females in size. Only cohabitation with intact females increased the aggression of resident males against unfamiliary male intruders. Female enhancement of aggression does not appear to be caused by sexual frustration of males, or a function of dominance-subordinance relations, per se. Increased aggression may be mediated by elevated testosterone production associated with mating.  相似文献   

18.
Repeated injections of α-estradiol benzoate in immature females, and of testosterone propionate in immature males at the times and doses used, seemed to enable chickens to eliminate Ascaridia galli worms at a greater rate than the untreated controls. No sex difference in number of worms harbored was observed between normal males and females within the limits of age studied. The increase in resistance in hosts that received homologous sex hormones was similar in males and in females.Measurements of worms recovered indicated that gonadal hormones or their products may possibly have an effect upon the growth of the parasites. Injections of α-estradiol benzoate seemed to cause a temporary retardation in the mean rate of growth of the worms, whereas injections of testosterone propionate seemed to cause a temporary acceleration.  相似文献   

19.
The administration of 0.5 mg of testosterone propionate (TP) to orchiectomized rats or of 2 ug of estradiol to oophorectomized rats resulted in significantly less 3H-norepinephrine remaining in the pineal gland 60 and 120 min after a pulse injection of the radioactive compound. This effect was not observed in animals administered with 3H-norepinephrine 45 or 180 min after a single hormone injection. Half-lives for 3H-norepinephrine disappearance in estradiol- and TP-treated rats were 62 and 60 min respectively whereas those of female and male vehicle-injected controls were 109 and 123 min respectively. Hormone treatment did not affect pinela norepinephrine content in any of the schedules used. Norepinephrine efflux expressed as pg. mg tissue−1. min−1 was 33 in estradiol-treated females, 17 in vehicle-treated females, 28 in TP-treated males and 12 in vehicle-treated males. These data indicate that the norepinephrine turnover in neurons innervating the pineal gland is increased by chronic administration of female and male sex hormones.  相似文献   

20.
The hippocampus is implicated in spatial cognition, which is sexually dimorphic and developmentally sensitive to gonadal steroids. Previously we have shown a sex difference in CA3 pyramidal cell layer volume and neuronal soma size that was reversible with neonatal castration in males or prenatal treatment of females with either testosterone propionate (TP) or a nonaromatizable androgen, dihydrotestosterone propionate, but not estradiol benzoate, all of which correlated with adult water maze navigation. The present study further investigates developmental androgen sensitivity of CA3 pyramidal neurons by measuring dendritic morphology and its relation to adult spatial ability. Female rats were injected with TP on postnatal day (P) 3 and P5 or ovariectomized (OVX) on P2, and male rats were castrated on P2, with or without testosterone replacement (Cas+T). Sham surgery controls were also included. Animals were tested on a water maze in adulthood, sacrificed, and CA3 pyramidal neurons were Golgi-stained and reconstructed in three dimensions using a computer-interfaced morphometry system. High-androgen groups (control males, Cas+T, TP females) performed better in spatial navigation and exhibited CA3 neurons with longer dendrites, a larger number of dendritic branches, and volumes of influence compared to low-androgen groups (control females, castrated males, OVX). Collectively, these findings indicate that the critical time period for organizational effects of androgens on the CA3 pyramidal neurons includes both prenatal and postnatal life, during which time androgens regulate developmental events such as somal growth and neuronal differentiation, all of which significantly contribute to establishing the sex difference in adult spatial navigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号