首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The objective of this experiment was to investigate the effects of feed supplementation with equivalent doses of selenium from sodium selenite (SS) or selenized yeast (SY) on Se deposition, selenoenzyme activity and lipid peroxidation in tissues as well as in bacterial and protozoal fractions of rumen contents in sheep. The phagocytic activity of monocytes and neutrophils in whole blood was also assessed after 3 months of dietary treatment. While animals in the control group were fed with unsupplemented basal diet (BD) containing only background Se (0.16 mg/kg DM), the diet of the other two groups (n = 6) consisted of identical BD enriched with 0.4 mg Se/kg DM either from SS or SY. Concentrations of Se in blood and tissues were found to be significantly increased in both supplemented groups. No response in Se deposition was recorded in the musculus longissimus dorsi of sheep given dietary SS. The intake of SY resulted in a significantly higher Se level in the blood, kidney medulla, skeletal muscles, heart, intestinal and ruminal mucosa than in the case of SS supplementation. No differences appeared between tissue Se contents in the liver and kidney cortex due to the source of added Se. Regardless of source, Se supplementation to feeds significantly increased the glutathione peroxidase (GPx) activity in blood and tissues except the kidney medulla and jejunal mucosa. Supplementation with SY resulted in significantly higher activity of thioredoxin reductase in the liver and ileal mucosa, and also reduced malondialdehyde content in the liver and duodenal mucosa. Dietary Se intake increased Se concentrations in the total rumen contents and bacterial and protozoal fractions. The accumulation of Se in rumen microbiota was associated with increased GPx activity. Phagocytic cell activity was enhanced by Se supplementation. Our results indicate that Se from both sources has beneficial effects on antioxidant status in sheep and can be utilized by rumen microflora.  相似文献   

2.
A 6-week trial was conducted to compare the effect of selenium (Se) from hydroponically produced Se-enriched kale sprout (HPSeKS), sodium selenite (SS), and Se-enriched yeast (SeY) in laying hens. A total of 144 40-week-old hens were randomly divided into four groups, according to a completely randomized design. Each group consisted of four replicates with nine hens per replicate. The dietary treatments were T1 (basal diet) and T2, T3, and T4 (basal diets supplemented with 0.30 mg Se/kg from SS, SeY, and HPSeKS, respectively). Results showed that Se supplement did not affect (p > 0.05) productivity and egg quality. Hens fed Se from HPSeKS and SeY exhibited higher (p < 0.05) Se bioavailability than hens fed Se from SS. Whole egg Se concentration of hens fed Se from HPSeKS was similar (p > 0.05) to that of hens fed Se from SeY, but higher (p < 0.05) than that of hens fed Se from SS. However, the breast muscle and heart tissue Se concentrations of hens fed Se from SS, SeY, and HPSeKS were not different (p > 0.05). The results of this trial demonstrated that Se from HPSeKS and SeY was more efficient than Se from SS on Se bioavailability and whole egg Se concentration in laying hens.  相似文献   

3.
The objective of this study was to evaluate influence of dietary palygorskite (Pal) supplementation on growth performance, mineral accumulations in the tissues (livers, kidneys, and muscles), antioxidant capacities, and meat quality of broilers fed lead (Pb)-contaminated diet. One-hundred forty-four male broiler chicks were randomly divided into three treatment groups, receiving a corn-soybean meal basal diet (the control group), the basal diet contaminated with 10 mg/kg Pb (the Pb group), and the basal diet with 10-g/kg Pal supplementation and 10-mg/kg Pb contamination (the Pal/Pb group) from 1 to 42 days of age, respectively. Treatments did not affect growth performance of broilers in the 42-day study (P > 0.05). Compared with the control group, Pb contamination increased Pb accumulation in the livers, kidneys, and muscles (P < 0.05); elevated malondialdehyde accumulation in the livers, kidneys, and breast muscles; glutathione peroxidase activity in the livers and superoxide dismutase activity in the kidneys (P < 0.05); exacerbated drip loss in the pectoralis muscles (P < 0.05); and reduced glutathione peroxidase activity in the pectoralis muscles (P < 0.05) of broilers at 42 days of age. The values of these parameters were reversed in the Pal/Pb group to levels comparable with those in the control group (P < 0.05). Additionally, Pal supplementation reduced redness value in the pectoralis muscles (P < 0.05), and decreased Cu concentration in the pectoralis muscles and livers at 42 days of age as well as its accumulation in the kidneys at both 21 and 42 days of age compared with the other two groups (P < 0.05). The results suggested that dietary Pal supplementation would decrease Pb residue in the tissues, alleviate oxidative stress, and affect meat quality of broilers exposed to Pb.  相似文献   

4.
We investigated the effects of selenium-enriched probiotics (SP) on broiler meat quality under high ambient temperature and explore their underlying mechanisms. A total of 200 1-day-old male broiler chicks (Ross 308) were randomly allotted to four treatment groups, each with five replicates, in groups of ten birds. These birds were fed a corn-soybean basal diet (C), a basal diet plus probiotics supplementation (P), a basal diet plus Se supplementation in the form of sodium selenite (SS, 0.30 mg Se/kg), and a basal diet with the addition of selenium-enriched probiotics (SP, 0.30 mg Se/kg). The experiment lasted for 42 days. The birds were sacrificed by cervical dislocation, and the breast muscles were removed for further process. Our results showed that SP diet significantly increased (p < 0.05) the physical (pH, colors, water holding capacity, drip loss, shear force) and sensory characteristics of breast meat. All P, SS, and SP supplementation enhanced the antioxidant system by increasing (p < 0.05) the Se concentrations, glutathione (GSH) levels, activities of glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) whereas decreasing (p < 0.05) malondialdehyde (MDA) levels, with SP being higher than P and SS. Moreover, SP diet significantly upregulated (p < 0.05) the mRNA levels of glutathione peroxidase genes (GPx1, GPx4) while it downregulated heat stress biomarkers such as heat shock protein (HSP) 70 as compared to C, P, and SS diets. In conclusion, our findings suggest that SP may function as beneficial nutritive supplement that is capable of improving meat quality during the summer season.  相似文献   

5.
Pulmonary arterial hypertension (PAH) syndrome in broilers is associated with hypoxia, which prevails at high altitude. Oxidative stress is the pathogenic mechanism underlying PAH. Because selenium is key element in the structure of antioxidant enzymes, we evaluated pulmonary hypertensive responses in broiler chickens fed with diets supplemented with organic or nano-selenium. One hundred forty-four broilers (starting at 5 days old) were fed with (i) control group: birds received a standard diet; (ii) nano-selenium group: birds were fed with basal diet supplemented with nano-selenium at 0.3 mg/kg; and (iii) organic selenium group: birds received basal diet supplemented with organic selenium at 0.3 mg/kg. We assessed growth performance, carcass characteristics, antioxidant variables, blood parameters, and small intestine morphology. Although Se supplementation did not affect growth performance, carcass traits, and organ weight (P > 0.05), the right to total ventricular weight ratio (RV:TV), malondialdehyde concentration in the liver, and heterophil to lymphocyte ratio were significantly lower in the nano-selenium group relative to the control (P < 0.05). Chickens that received nano-selenium also elicited significantly higher antibody titers after 24 h of an injection of sheep red blood cells (P < 0.05). Nano-selenium supplementation also significantly increased villus height, absorptive surface area, and lamina propria thickness relative to the control (P < 0.05) in different segments of the small intestine. In contrast, organic selenium supplement improved intestinal morphometry only in the jejunum. We conclude that dietary supplementation of 0.30 mg/kg nano-selenium could prevent right ventricular hypertrophy as reflected by reduced RV:TV, reduced levels of lipid peroxidation in the liver, and improved gut function.  相似文献   

6.
The current study was conducted to investigate the effects of dietary zinc oxide (ZnO) on the antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Ninety-six 21-day-old piglets were randomly assigned to three dietary treatments. Each treatment had eight replicates with four piglets per replicate. The piglets were fed either control diet (control) or control diet supplemented with in-feed antibiotics (300 mg/kg chlortetracycline and 60 mg/kg colistin sulfate) or pharmacological doses of ZnO (3000 mg/kg). The experiment lasted 4 weeks. Blood samples were collected at days 14 and 28, while intestinal samples were harvested at day 28 of the experiment. Dietary high doses of ZnO supplementation significantly increased the body weight (BW) at day 14 and average daily gain (ADG) of days 1 to 14 in weaned piglets, when compared to control group (P < 0.05). The incidence of diarrhea of piglets fed ZnO-supplemented diets, at either days 1 to 14, days 14 to 28, or the overall experimental period, was significantly decreased in comparison with those in other groups (P < 0.05). Supplementation with ZnO increased the villus height of the duodenum and ileum in weaned piglets and decreased the crypt depth of the duodenum, when compared to the other groups (P < 0.05). Dietary ZnO supplementation decreased the malondialdehyde (MDA) concentration at either day 14 or day 28, but increased total superoxide dismutase (T-SOD) at day 14, when compared to that in the control (P < 0.05). ZnO supplementation upregulated the messenger RNA (mRNA) expression of zonula occludens-1 (ZO-1) and occludin in the jejunum mucosa of weaned piglets, compared to those in the control (P < 0.05). The pro-inflammatory cytokine interleukin-lβ (IL-1β) mRNA expression in the jejunum mucosa was downregulated in the ZnO-supplemented group, compared with the control (P < 0.05). Both in-feed antibiotics and ZnO supplementation decreased the mRNA expression of interferon-γ (IFN-γ), but increased the mRNA expression of transforming growth factor-β (TGF-β), in the jejunum mucosa of piglets, when compared to those in the control (P < 0.05). In summary, supplemental ZnO was effective on the prevention of post-weaning diarrhea (PWD) in weaned piglets and showed comparative growth-promoting effect on in-feed antibiotics, probably by the mechanism of improvement of the antioxidant capacity, restoration of intestinal barrier function and development, and modulation of immune functions.  相似文献   

7.
The study was conducted to evaluate the effects of chromium-loaded chitosan nanoparticles (Cr-CNP) on glucose transporter 4 (GLUT4), relevant messenger RNA (mRNA), and proteins involved in phosphatidylinositol 3-kinase (PI3K), Akt2-kinase, and AMP-activated protein kinase (AMPK) of skeletal muscles in finishing pigs. A total of 120 crossbred barrows (BW 65.00 ± 1.26 kg) were randomly allotted to four dietary treatments, with three pens per treatment and 10 pigs per pen. Pigs were fed the basal diet supplemented with 0, 100, 200, or 400 μg/kg of Cr from Cr-CNP for 35 days. After the feeding trials, 24 pigs were slaughtered to collect longissimus muscle samples for analysis. Cr-CNP supplementation increased GLUT4 messenger RNA (mRNA) (quadratically, P < 0.01) and total and plasma membrane GLUT4 protein contents (linearly and quadratically, P < 0.001) in skeletal muscles. Glycogen synthase kinase 3β (GSK-3β) mRNA was decreased linearly (P < 0.001) and quadratically (P < 0.001). Supplemental Cr-CNP increased insulin receptor (InsR) mRNA quadratically (P < 0.01), Akt2 total protein level linearly (P < 0.01) and quadratically (P < 0.001), and PI3K total protein was increased significantly (P < 0.05) in 200 μg/kg treatment group. The mRNA of AMPK subunit gamma-3 (PRKAG3) and protein of AMPKα1 was significantly increased (P < 0.001) with the addition of Cr-CNP. The results indicate that dietary supplementation of Cr-CNP may promote glucose uptake by leading to recruitment of GLUT4 to the plasma membrane in skeletal muscles, and these actions may be associated with the insulin signal transduction and AMPK.  相似文献   

8.
Circulating concentration of the essential trace element selenium (Se) was significantly lower in inflammatory disorders. Although Se plays physiological roles mainly through the function of 25 selenoproteins, the response of the selenogenome in immune tissues during inflammatory reactions remains unclear. The objective of this study was to determine the Se retention and selenogenome expression in immune tissues during the lipopolysaccharide (LPS)-induced inflammatory response in porcine. A total of 12 male pigs were randomly divided into two groups and injected with LPS or saline. After 4 h postinjection, blood samples were collected and pigs were euthanized. Pigs challenged with LPS had 36.8 and 16.6 % lower (P < 0.05) Se concentrations in the serum and spleen, respectively, than those injected with saline. Moreover, the activities of GPX decreased (P < 0.05) by 23.4, 26.6, and 30.4 % in the serum, thymus, and lymph node, respectively, in the pigs injected with LPS. Furthermore, the LPS challenge altered (P < 0.05) the mRNA expression of 14, 16, 10, and 6 selenoprotein genes in the liver, spleen, thymus, and lymph node, respectively. Along with 10 previously reported selenoprotein genes, the response of Txnrd2, Txnrd3, Sep15, Selh, Seli, Seln, Selo, Selt, Selx, and Sephs2 to inflammatory reaction in immune tissues were newly illustrated in this study. In conclusion, the LPS-induced inflammatory response impaired Se metabolism and was associated with dysregulation of the selenogenome expression in immune tissues.  相似文献   

9.
This experiment was conducted to evaluate the effects of chromium methionine with/without zinc sulfate or zinc amino acid complex on the growth performance, carcass traits, meat quality, serum parameters, endocrine parameters, and antioxidant status of growing-finishing pigs. A total of 180 (32.0 ± 1.7 kg body weight, BW) crossbred pigs (Duroc × Landrace × Yorkshire) were used in a completely randomized design with three dietary treatments and 10 replicates per treatment (five pens of barrows and five pens of gilts with six pigs per replicate). Three treatments were corn-soybean meal-based diets supplemented with 100 mg Zn/kg from zinc sulfate (ZnSO4), 100 mg Zn/kg from ZnSO4 + 0.2 mg Cr/kg from chromium methionine complex (CrMet), or 50 mg Zn/kg from ZnSO4 + 50 mg Zn/kg from zinc amino acid complex (ZnAA) + 0.2 mg Cr/kg from CrMet, respectively. The experiment lasted 105 days, of which was divided into three stages including phase 1 (30 to 50 kg BW), phase 2 (50 to 80 kg BW), and phase 3 (80 to 110 kg BW). Results showed that supplementation with CrMet and ZnAA improved (P < 0.05) the feed conversion of the pigs in phase 2, phase 3, and the overall experiment. Hot carcass weight, dressing percentage, and a longissimus dorsi muscle area were increased (P < 0.05) in pigs fed with diets supplemented with both CrMet and ZnAA compared with pigs fed with diets containing only ZnSO4 (P < 0.05). There was also an increase (P < 0.01) pH24 h in the longissimus dorsi muscle in pigs fed with diets supplemented with CrMet and ZnAA. The concentration of serum glucose in pigs fed with diets containing CrMet and ZnAA was decreased (P < 0.05) compared with that in pigs fed with the diet containing ZnSO4. Supplementation with CrMet and ZnAA increased (P < 0.05) the circulating levels of insulin and decreased (P < 0.05) cortisol. There was an increase (P < 0.05) in total serum antioxidant capacity and Cu/Zn superoxide dismutase activity as well as a decrease (P < 0.05) in serum malondialdehyde concentrations in pigs fed with diets supplemented with CrMet and ZnAA compared with pigs fed with the diet supplemented only with ZnSO4. In conclusion, supplementation of CrMet only or CrMet together with ZnAA improved feed conversion, carcass traits, and meat quality in the growing-finishing pigs.  相似文献   

10.
An experiment was conducted to investigate the effects of zinc glycinate (Zn-Gly) supplementation as an alternative for zinc sulphate (ZnSO4) on productive and reproductive performance, zinc (Zn) concentration and antioxidant status in broiler breeders. Six hundred 39-week-old Lingnan Yellow broiler breeders were randomly assigned to 6 groups consisting of 4 replicates with 25 birds each. Breeders were fed a basal diet (control group, 24 mg Zn/kg diet), basal diet supplemented with 80 mg Zn/kg diet from ZnSO4 or basal diet supplemented with 20, 40, 60 and 80 mg Zn/kg diet from Zn-Gly. The experiment lasted for 8 weeks after a 4-week pre-test with the basal diet, respectively. Results showed that Zn supplementation, regardless of sources, improved (P?<?0.05) the feed conversion ratio (kilogram of feed/kilogram of egg) and decreased broken egg rate, and elevated (P?<?0.05) the qualified chick rate. Compared with the ZnSO4 group, the 80 mg Zn/kg Zn-Gly group significantly increased (P?<?0.05) average egg weight, fertility, hatchability and qualified chick rate, whereas it decreased (P?<?0.05) broken egg rate. The Zn concentrations in liver and muscle were significantly higher (P?<?0.05) in 80 mg Zn/kg Zn-Gly group than that in ZnSO4 group. Compared with ZnSO4 group, 80 mg Zn/kg Zn-Gly group significantly elevated (P?<?0.05) the mRNA abundances of metallothionein (MT) and copper-zinc superoxide (Cu-Zn SOD), as well as the Cu-Zn SOD activity and MT concentration in liver. Moreover, the 80 mg Zn/kg Zn-Gly group had higher (P?<?0.05) serum T-SOD and Cu-Zn SOD activities than that in the ZnSO4 group. This study indicated that supplementation of Zn in basal diet improved productive and reproductive performance, Zn concentration and antioxidant status in broiler breeders, and the 80 mg Zn/kg from Zn-Gly was the optimum choice for broiler breeders compared with other levels of Zn from Zn-Gly and 80 mg/kg Zn from ZnSO4.  相似文献   

11.
This study investigated the effect of dietary supplementation of probiotic Pedicoccus acidilactici and nucleotide (separately or combined) on growth performance, intestinal microbiota, hemato-immunological parameters, and immunity response in goldfish (Carassius auratus). Fish (average weight 5–6 g) were acclimatized and divided into eight experimental diets supplemented with P. acidilactici of different concentrations (0.1, 0.2, and 0.3% diet) and nucleotides (0 and 0.5% diet) for 6 months. Fish fed with experimental diets showed significant differences in terms of final weight, weight gain, feed conversion ratio, daily growth rate, and condition factor when compared to control diet (P < 0.05). Fish fed with probiotic (0.3%) separately and combined with nucleotide (0.5%) had highest RBC and WBC when compared to other diets (P < 0.05), while the highest values for Hb and Hct as well as total protein, glucose, albumin, and globulin were observed in probiotic (0.2%) and nucleotide (0.5%) combined diet. Serum lysozyme and anti-protease activities were significantly higher in probiotic (0.1 and 0.2%) and nucleotide (0.5%) combined diets. Similarly, these two diets combined showed the highest colonization of P. acidilactici when compared to other diets. In conclusion, combined dietary probiotic and nucleotide improve the growth performance, hemato-biochemical parameters, and intestine growth in C. auratus.  相似文献   

12.
Bacteria play crucial roles in the combined system of substrate addition and C/N control, which has been demonstrated to improve aquaculture production. However, the complexity of surface-attached bacteria on substrates and suspended bacteria in the water column hamper further application of this system. This study firstly applied this combined system into the culture of grass carp, and then explored the relationship between microbial complexes from surface-attached and suspended bacteria in this system and the production of grass carp. In addition, this study investigated bacterial community structures as affected by four C/N ratios using Illumina sequencing technology. The results demonstrated that the weight gain rate and specific growth rate of grass carp in the CN20 group (C/N ratio 20:1) were the highest (P < 0.05), and dietary supplementation of the microbial complex had positive effects on the growth of grass carp (P < 0.05). Sequencing data revealed that, (1) the proportions of Verrucomicrobiae and Rhodobacter (surface-attached), sediminibacterium (suspended), and emticicia (surface-attached and suspended) were much higher in the CN20 group compared with those in the other groups (P < 0.05); (2) Rhodobacter, Flavobacterium, Acinetobacter, Pseudomonas, Planctomyces, and Cloacibacterium might be important for the microbial colonization on substrates; (3) as the C/N ratio increased, proportions of Hydrogenophaga (surface-attached and suspended), Zoogloea, and Flectobacillus (suspended) increased, but proportions of Bacillus, Clavibacter, and Cellvibro (surface-attached and suspended) decreased. In summary, a combined system of substrate addition and C/N control increased the production of grass carp, and Verrucomicrobiae and Rhodobacter in the surface-attached bacterial community were potential probiotic bacteria that contributed to the enhanced growth of grass carp.  相似文献   

13.
14.
15.
The expression of nine functional candidates for QT abdominal fat weight and relative abdominal fat content was investigated by real-time polymerase chain reaction (PCR) in the liver, adipose tissue, colon, muscle, pituitary gland and brain of broilers. The high mobility group AT-hook 1 (HMG1A) gene was up-regulated in liver with a ratio of means of 2.90 (P?≤?0.01) in the «fatty» group (relative abdominal fat content 3.5?±?0.18%, abdominal fat weight 35.4?±?6.09 g) relative to the «lean» group (relative abdominal fat content 1.9?±?0.56%, abdominal fat weight 19.2?±?5.06 g). Expression of this gene was highly correlated with the relative abdominal fat content (0.70, P?≤?0.01) and abdominal fat weight (0.70, P?≤?0.01). The peroxisome proliferator-activated receptor gamma (PPARG) gene was also up-regulated in the liver with a ratio of means of 3.34 (P?≤?0.01) in the «fatty» group relative to the «lean» group. Correlation of its expression was significant with both the relative abdominal fat content (0.55, P?≤?0.05) and the abdominal fat weight (0.57, P?≤?0.01). These data suggest that the HMG1A and PPARG genes were candidate genes for abdominal fat deposition in chickens. Searching of rSNPs in regulatory regions of the HMG1A and PPARG genes could provide a tool for gene-assisted selection.  相似文献   

16.
We explored the relationships between perturbation-driven population decline and genetic/genotypic structure in the clonal seagrass Posidonia oceanica, subject to intensive meadow regression around four Mediterranean fish-farms, using seven specific microsatellites. Two meadows were randomly sampled (40 shoots) within 1,600 m2 at each site: the “impacted” station, 5–200 m from fish cages, and the “control” station, around 1,000 m downstream further away (considered a proxy of the pre-impact genetic structure at the site). Clonal richness (R), Simpson genotypic diversity (D*) and clonal sub-range (CR) were highly variable among sites. Nevertheless, the maximum distance at which clonal dispersal was detected, indicated by CR, was higher at impacted stations than at the respective control station (paired t-test: P < 0.05, N = 4). The mean number of alleles (Â) and the presence of rare alleles ( r) decreased at impacted stations (paired t-test: P < 0.05, and P < 0.02, respectively, N = 4). At a given perturbation level (quantified by the organic and nutrient loads), shoot mortality at the impacted stations significantly decreased with CR at control stations (R = 0.86, P < 0.05). Seagrass mortality also increased with  (R = 0.81, P < 0.10), R (R = 0.96, P < 0.05) and D* (R = 0.99, P < 0.01) at the control stations, probably because of the negative correlation between those parameters and CR. Therefore, the effects of clonal size structure on meadow resistance could play an important role on meadow survival. Large genotypes of P. oceanica meadows thus seem to resist better to fish farm-derived impacts than little ones. Clonal integration, foraging advantage or other size-related fitness traits could account for this effect.  相似文献   

17.
Cyclophosphamide (CP) is one of the widely used anticancer agents; however, it has serious deleterious effects on normal host cells due to its nonspecific action. The essential trace element Selenium (Se) is suggested to have chemopreventive and chemotherapeutic efficacy and currently used in pharmaceutical formulations. Previous report had shown Nano-Se could protect CP-induced hepatotoxicity and genotoxicity in normal Swiss albino mice; however, its role in cancer management is still not clear. The aim of present study is to investigate the chemoprotective efficacy of Nano-Se against CP-induced toxicity as well as its chemoenhancing capability when used along with CP in Swiss albino mice against Ehrlich’s ascites carcinoma (EAC) cells. CP was administered (25 mg/kg b.w., i.p.) and Nano-Se was given (2 mg Se/kg b.w., p.o.) in concomitant and pretreatment schedule. Increase levels of serum hepatic marker, hepatic lipid peroxidation, DNA damage, and chromosomal aberration in CP-treated mice were significantly (P < 0.05) reversed by Nano-Se. The lowered status of various antioxidant enzymes in tumor-bearing mice after CP treatment was also effectively increased by Nano-Se. Administration of Nano-Se along with CP caused a significant reduction in tumor volume, packed cell volume, viable tumor cell count, and increased the survivability of the tumor-bearing hosts. The results suggest that Nano-Se exhibits significant antitumor and antioxidant effects in EAC-bearing mice. The potential for Nano-Se to ameliorate the CP-evoked toxicity as well as to improve the chemotherapeutic effect could have beneficial implications for patients undergoing chemotherapy with CP.  相似文献   

18.
The aim of the study was to evaluate the effects of low to moderate oral exposure to the Fusarium toxin deoxynivalenol (DON; derived from culture material) on performance, water intake, and carcass parameters of broilers during early and late developmental phases. A total of 160 Ross 308 broilers were randomly allocated to four different feeding groups (n = 40/group) including 0 (control), 2.5, 5, and 10 mg DON/kg wheat-soybean meal-based feed. Three consecutive replicates of the experiment were performed. Half of the broilers were slaughtered in week 3 of the trial whereas the other half were slaughtered in week 5. Dry matter intake (DMI) and water intake (WI) were recorded on a daily basis and the body weight (BW) and BW gain (BWG) were determined weekly. The following carcass traits were recorded and calculated in absolute and relative data: dressed carcass weight, breast muscle weight, leg weight, and liver weight. Data showed that BW (P < 0.001), BWG (P = 0.005), and DMI (P < 0.001) were reduced by DON-feeding during the entire feeding period. The ratio of DMI to body weight gain (DMI/BWG) was not affected by the treatment. However, the ratio of water to DMI (WI/DMI) increased in DON-treated birds (P = 0.021). Contrast analysis showed that DON tendentially reduced slaughter weight (P = 0.082) and decreased leg yield (P = 0.037) in DON-fed chickens in week 5 of the experiment. Liver organ weight decreased in the 3-week-old DON-fed broilers compared to that in the control-fed birds (P = 0.037). In conclusion, the study suggests that DMI and BW were negatively affected under the experimental conditions at DON levels lower than the current guidance value in the European Union of 5 mg/kg feed. The study also indicates that broilers fed on low to moderate level DON-contaminated diets showed increased WI/DMI ratio which might have negative influence on wet litter syndrome.  相似文献   

19.
20.
Effect of Selenium on Ion Profiles and Antioxidant Defense in Mice Livers   总被引:1,自引:0,他引:1  
Se entering the mammalian body from diverse sources shows different liver accumulation patterns. However, the effects of Se from diverse sources on the body’s I on spectrum and the relationship between the changes in the ion spectrum and antioxidant function are not clear. In this study, 80 3-week-old female mice were randomly divided into four groups: a control group, sodium selenite group, yeast Se group, and seaweed Se group. The estimated Se contents were 0.03, 0.23, 0.23, and 0.23 mg/kg, respectively. The liver was collected from mice on day 60. The results showed that, compared with the control group, sodium selenite significantly reduced Na and Li contents and significantly increased Cr, Ni, Se, and Sb contents (P < 0.05); yeast Se significantly increased Mg, Ca, Si, Cr, Fe, Co, Cu, Se, Sb, and Al contents, and significantly reduced Tl, As, and Hg contents (P < 0.05); seaweed Se significantly increased B, Si, Cr, Fe, Se, As, and Hg contents, and significantly reduced Zn and Tl contents (P < 0.05). The results of antioxidant parameter analysis showed that Se from three sources increased total superoxide dismutase content and significantly reduced malondialdehyde content (P < 0.05), whereas no clear effect was observed on total antioxidant capacity (P > 0.05). Combined with the ion spectrum and antioxidant test results, yeast Se was found to most effectively promote the accumulation of beneficial elements, enhance antioxidant capacity, and reduce the concentration of toxic elements. The variety of ion spectrum antioxidants followed a similar trend, which indicated that the ion spectrum might be related to antioxidant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号