首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Selenoprotein synthesis requires the reinterpretation of a UGA stop codon as one that encodes selenocysteine (Sec), a process that requires a set of dedicated translation factors. Among the mammalian selenoproteins, Selenoprotein P (SELENOP) is unique as it contains a selenocysteine-rich domain that requires multiple Sec incorporation events.

Scope of review

In this review we elaborate on new data and current models that provide insight into how SELENOP is made.

Major conclusions

SELENOP synthesis requires a specific set of factors and conditions.

General significance

As the key protein required for proper selenium distribution, SELENOP stands out as a lynchpin selenoprotein that is essential for male fertility, proper neurologic function and selenium metabolism.  相似文献   

2.
Selenoproteins are an essential and unique group of proteins in which selenocysteine (Sec) is incorporated in response to a stop codon (UGA). Reprograming of UGA for Sec insertion in eukaryotes requires a cis-acting stem–loop structure in the 3′ untranslated region of selenoprotein mRNA and several trans-acting factors. Together these factors are sufficient for Sec incorporation in vitro, but the process is highly inefficient. An additional challenge is the synthesis of selenoprotein P (SELENOP), which uniquely contains multiple UGA codons. Full-length SELENOP expression requires processive Sec incorporation, the mechanism for which is not understood. In this study, we identify core coding region sequence determinants within the SELENOP mRNA that govern SELENOP synthesis. Using 75Se labeling in cells, we determined that the N-terminal coding sequence (upstream of the second UGA) and C-terminal coding sequence context are two independent determinants for efficient synthesis of full-length SELENOP. In addition, the distance between the first UGA and the consensus signal peptide is also critical for efficiency.  相似文献   

3.
BackgroundFew spatial studies on serum selenoprotein P (SELENOP) and Keshan disease (KD) have been reported at the county-level in Heilongjiang province, China. This study aimed to provide visualized spatial epidemiological evidence of selenium molecular marker in residents living in endemic areas for the precise assessment of prevention, control, and elimination of KD.MethodsUsing a spatial ecological study design, 587 subjects living in cities, townships, and rural areas of 50 KD endemic counties and 37 non-endemic counties in Heilongjiang province were investigated. The serum SELENOP levels of the participants were measured by enzyme-linked immunosorbent assay. Thematic maps were created, and spatial regression analysis was conducted using ordinary least squares.ResultsThe mean serum SELENOP level of the 587 subjects was 7.4 ± 3.0 μg/mL. The mean levels of serum SELENOP were higher in cities (7.4 ± 2.9 μg/mL) and townships (7.9 ± 3.2 μg/mL) than in rural areas (6.0 ± 3.0 μg/mL). The mean levels of serum SELENOP were trending towards high levels in non-endemic areas (7.4 ± 3.0 μg/mL) than in KD endemic areas (6.3 ± 3.3 μg/mL). Spatial regression analysis showed that the serum SELENOP level was positively correlated with the per capita gross domestic product.ConclusionSelenium deficiency may still exist in some KD endemic counties in Heilongjiang province, including Lingdong, Nenjiang, and Baiquan; these counties should be considered as key areas for precision prevention, control, and elimination of KD. Inclusion of selenium in the national surveillance of KD will provide more evidence for the assessment of KD elimination from a selenium nutrition perspective.  相似文献   

4.
Summary The role of specific transferrin (Tf) and Tf receptor interaction on brain capillary endothelial cells in iron transport from the plasma to the brain was investigated by using Tf from several species of animals labeled with 59Fe and 125I, and 15-day and adult rats. The rate of iron transfer was much greater in the 15-day rats. It was greatest with Tf from the mammals, rat, rabbit and human, but much lower with chicken ovotransferrin and quokka (a marsupial), toad, lizard, crocodile, and fish Tf. The uptake of Tf by the brain showed a similar pattern, except for a very high uptake of ovotransferrin (ovo Tf). Iron uptake by the femurs (a source of bone marrow) was also high with Tf from the mammalian species and low with the other types of Tf, but showed little change with aging of the animals. It is concluded that iron transport into the brain is dependent on the function of Tf receptors, probably on capillary endothelial cells, and that these receptors show the same type of species specificity as the receptors on immature erythroid cells. Also, the decrease in iron uptake by the brain as rats age from 15 days to adulthood is specific for the brain and is not a general effect of the aging process.Abbreviations Tf transferrin - ovo Tf ovotransferrin  相似文献   

5.
In vivo studies have shown that selenium is supplied to testis and brain by apoER2-mediated endocytosis of Sepp1. Although cultured cell lines have been shown to utilize selenium from Sepp1 added to the medium, the mechanism of uptake and utilization has not been characterized. Rat L8 myoblast cells were studied. They took up mouse Sepp1 from the medium and used its selenium to increase their glutathione peroxidase (Gpx) activity. L8 cells did not utilize selenium from Gpx3, the other plasma selenoprotein. Neither did they utilize it from Sepp1(Δ240-361), the isoform of Sepp1 that lacks the selenium-rich C-terminal domain. To identify Sepp1 receptors, a solubilized membrane fraction was passed over a Sepp1 column. The receptors apoER2 and Lrp1 were identified in the eluate by mass spectrometry. siRNA experiments showed that knockdown of apoER2, but not of Lrp1, inhibited (75)Se uptake from (75)Se-labeled Sepp1. The addition of protamine to the medium or treatment of the cells with chlorate also inhibited (75)Se uptake. Blockage of lysosome acidification did not inhibit uptake of Sepp1 but did prevent its digestion and thereby utilization of its selenium. These results indicate that L8 cells take up Sepp1 by an apoER2-mediated mechanism requiring binding to heparin sulfate proteoglycans. The presence of at least part of the selenium-rich C-terminal domain of Sepp1 is required for uptake. RT-PCR showed that mouse tissues express apoER2 in varying amounts. It is postulated that apoER2-mediated uptake of long isoform Sepp1 is responsible for selenium distribution to tissues throughout the body.  相似文献   

6.

Glutamate is the major excitatory amino acid neurotransmitter in the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed in neurons and glial cells. Overactivation of glutamate receptors results in neuronal death, known as excitotoxicity. A family of sodium-dependent glutamate transporters enriched in glial cells are responsible of the vast majority of the removal of this amino acid form the synaptic cleft. Therefore, a precise and exquisite regulation of these proteins is required not only for a proper glutamatergic transmission but also for the prevention of an excitotoxic insult. Manganese is a trace element essential as a cofactor for several enzymatic systems, although in high concentrations is involved in the disruption of brain glutamate homeostasis. The molecular mechanisms associated to manganese neurotoxicity have been focused on mitochondrial function, although energy depletion severely compromises the glutamate uptake process. In this context, in this contribution we analyze the effect of manganese exposure in glial glutamate transporters function. To this end, we used the well-established model of chick cerebellar Bergmann glia cultures. A time and dose dependent modulation of [3H]-d-aspartate uptake was found. An increase in the transporter catalytic efficiency, most probably linked to a discrete increase in the affinity of the transporter was detected upon manganese exposure. Interestingly, glucose uptake was reduced by this metal. These results favor the notion of a direct effect of manganese on glial cells, this in turn alters their coupling with neurons and might lead to changes in glutamatergic transmission.

  相似文献   

7.
Selenoproteins are a unique family of proteins, characterized by the co-translational incorporation of selenium as selenocysteine, which play key roles in antioxidant defense. Among selenoproteins, selenoprotein P (Sepp1) is particularly distinctive due to the fact that it contains multiple selenocysteine residues and has been postulated to act in selenium transport. Within the brain, Sepp1 delivers selenium to neurons by binding to the ApoER2 receptor. Upon feeding a selenium-deficient diet, mice lacking ApoER2 or Sepp1 develop severe neurological dysfunction and exhibit widespread brainstem neurodegeneration, indicating an important role for ApoER2-mediated Sepp1 uptake in normal brain function. Selenocysteine lyase (Scly) is an enzyme that plays an important role in selenium homeostasis, in that it catalyzes the decomposition of selenocysteine and allows selenium to be recycled for additional selenoprotein synthesis. We previously reported that constitutive deletion of Scly results in neurological deficits only when mice are challenged with a low selenium diet. To gain insight into the relationship between Sepp1 and Scly in selenium metabolism, we created novel transgenic mice constitutively lacking both genes (Scly−/−Sepp1−/−) and characterized the neurobehavioral phenotype. We report that deletion of Scly in conjunction with Sepp1 further aggravates the phenotype of Sepp1−/− mice, as these mice needed supraphysiological selenium supplementation to survive, and surviving mice exhibited impaired motor coordination, audiogenic seizures, and brainstem neurodegeneration. These findings provide the first in vivo evidence that Scly and Sepp1 work cooperatively to maintain selenoprotein function in the mammalian brain.  相似文献   

8.
BackgroundBoth essential trace elements selenium (Se) and copper (Cu) play an important role in maintaining brain function. Homeostasis of Cu, which is tightly regulated under physiological conditions, seems to be disturbed in Alzheimer´s (AD) and Parkinson´s disease (PD) patients. Excess Cu promotes the formation of oxidative stress, which is thought to be a major cause for development and progression of neurological diseases (NDs). Most selenoproteins exhibit antioxidative properties and may counteract oxidative stress. However, expression of selenoproteins is altered under conditions of Se deficiency. Serum Se levels are decreased in AD and PD patients suggesting Se as an important factor in the development and progression of NDs. The aim of this study was to elucidate the interactions between Cu and Se in human brain cells particularly with respect to Se homeostasis.MethodsFirstly, modulation of Se status by selenite or SeMet were assessed in human astrocytes and human differentiated neurons. Therefore, cellular total Se content, intra- and extracellular selenoprotein P (SELENOP) content, and glutathione peroxidase (GPX) activity were quantified. Secondly, to investigate the impact of Cu on these markers, cells were exposed to copper(II)sulphate (CuSO4) for 48 h. In addition, putative protective effects of Se on Cu-induced toxicity, as measured by cell viability, DNA damage, and neurodegeneration were investigated.ResultsModulation of cellular Se status was strongly dependent on Se species. In detail, SeMet increased total cellular Se and SELENOP content, whereas selenite led to increased GPX activity and SELENOP excretion. Cu treatment resulted in 133-fold higher cellular Cu concentration with a concomitant decrease in Se content. Additionally, SELENOP excretion was suppressed in both cell lines, while GPX activity was diminished only in astrocytes. These effects of Cu could be partially prevented by the addition of Se depending on the cell line and Se species used. While Cu-induced oxidative DNA damage could not be prevented by addition of Se regardless of chemical species, SeMet protected against neurite network degeneration triggered by Cu.ConclusionCu appears to negatively affect Se status in astrocytes and neurons. Especially with regard to an altered homeostasis of those trace elements during aging, this interaction is of high physiological relevance. Increasing Cu concentrations associated with decreased selenoprotein expression or functionality might be a promoting factor for the development of NDs.  相似文献   

9.
10.
Summary The binding of intravenously administered prolactin to choroid plexus and brain tissue was determined radioautographically in the ring dove, a species that exhibits prolactin-induced alterations in brain function. An intense autoradiographic reaction was detected over the epithelial cells of the choroid plexus 5 min after the intravenous injection of 125I-ovine prolactin. A significant reaction was also observed over the infundibulum but no significant uptake of prolactin occurred in other brain areas. The binding of radiolabelled prolactin to infundibulum appeared to be non-specific, since excess unlabelled hormone did not reduce silver grain density. In contrast, 125I-ovine prolactin binding in choroid plexus was significantly reduced by excess unlabelled ovine prolactin or human growth hormone, but not by ovine luteinizing hormone. Specific binding to choroid plexus was also detected in vitro. The lack of significant brain uptake of prolactin in vivo is discussed in relation to recent in vitro evidence for specific binding sites for prolactin in several dove brain regions. Similarities between the binding results obtained in this avian species and those reported previously in mammals suggest that the two vertebrate groups exhibit similar patterns of prolactin interaction with neural target tissues.  相似文献   

11.
The cystine-glutamate antiporter (system xc -) is a Na+-independent amino acid transporter that exchanges extracellular cystine for intracellular glutamate. It is thought to play a critical role in cellular redox processes through regulation of intracellular glutathione synthesis via cystine uptake. In gliomas, system xc - expression is universally up-regulated while that of glutamate transporters down-regulated, leading to a progressive accumulation of extracellular glutamate and excitotoxic cell death of the surrounding non-tumorous tissue. Additionally, up-regulation of system xc - in activated microglia has been implicated in the pathogenesis of several neurodegenerative disorders mediated by excess glutamate. Consequently, system xc - is a new drug target for brain cancer and neuroinflammatory diseases associated with excess extracellular glutamate. Unfortunately no potent and selective small molecule system xc - inhibitors exist and to our knowledge, no high throughput screening (HTS) assay has been developed to identify new scaffolds for inhibitor design. To develop such an assay, various neuronal and non-neuronal human cells were evaluated as sources of system xc -. Human glioma cells were chosen based on their high system xc - activity. Using these cells, [14C]-cystine uptake and cystine-induced glutamate release assays were characterized and optimized with respect to cystine and protein concentrations and time of incubation. A pilot screen of the LOPAC/NINDS libraries using glutamate release demonstrated that the logistics of the assay were in place but unfortunately, did not yield meaningful pharmacophores. A larger, HTS campaign using the 384-well cystine-induced glutamate release as primary assay and the 96-well 14C-cystine uptake as confirmatory assay is currently underway. Unexpectedly, we observed that the rate of cystine uptake was significantly faster than the rate of glutamate release in human glioma cells. This was in contrast to the same rates of cystine uptake and glutamate release previously reported in normal human fibroblast cells.  相似文献   

12.
Ganyc D  Self WT 《FEBS letters》2008,582(2):299-304
The distribution of selenium in mammals has been recently shown to be mediated primarily by selenoprotein P. Even in the absence of selenoprotein P, selenium is distributed from the liver into all organs and tissues when supplemented in the diet. The form of selenium that is actively taken up by mammalian cells at trace concentrations has yet to be determined. We used a human keratinocyte model to determine whether reduction of the oxyanion selenite (SeO(3)(2-)) to the more reduced form of selenide (HSe(-)) would affect uptake. Indeed a reduced form of selenium, presumably selenide, was actively transported into keratinocytes and displayed saturation kinetics with an apparent K(m) of 279 nM. ATPase inhibitors blocked the uptake of selenide, as did the competing anions molybdate and chromate, but not sulfate. These results suggest that the small molecule form of selenium that is distributed in tissues is hydrogen selenide, despite its sensitivity to oxygen and reactivity to thiols.  相似文献   

13.
14.
The uptake of dietary selenium (about 3.5 mg/kg AF dry wt) as selenomethionine, selenocystine, selenite, selenate, and fish selenium in the plasma and red blood cells (RBC) of the oystercatcher has been investigated. The birds received the various selenium compounds subsequently, for at least 9 wk. After dietary supplementation of selenocystine, selenite, and selenate, plasma selenium was about 350 μg/L and RBC selenium 2.1 mg/kg dry wt. After supplementation of selenomethionine, the plasma concentration increased to 630 μg/L, and the RBC concentration to 4.1 mg/kg dry wt. When the fodder contained 3.1 mg/kg fish Se, an average plasma and RBC concentration of 415 μg/L and 14.4 mg/kg dry wt, respectively, was measured. The maximal increase of the selenium concentration in the plasma was attained at first sampling, 14 d after a change in dietary selenium (selenomethione or fish Se); the uptake seemed to be a concentration-regulated process. RBC concentrations (γ in mg/kg dry wt) increased with time (X in d) according toY=a?be?cX . Fifty percent of the total increase was attained within 17d, suggesting that diffusion into the RBC played a role. The selenium concentration in the plasma was positively correlated with the (fish) Se concentration in the fodder; the RBC concentration (60 d after the change in diet) was positively correlated with the plasma concentration. When the diet contained fish Se, the blood selenium concentrations of the captive birds were similar to the concentrations measured in field birds. Fish Se is a yet undetermined selenium compound. The present experiment showed that fish Se differed from selenomethionine, selenocystine, selenite, or selenate in uptake from the food and uptake in the RBC.  相似文献   

15.
The water-soluble vitamin riboflavin (RF) plays a critical role in many metabolic reactions, and thus, is essential for normal cellular functions and growth. The liver plays a central role in normal RF metabolism and is the site of maximal utilization of the vitamin. The mechanism of liver uptake of RF has been studied in animals, but no information is available describing the mechanism of the vitamin uptake in the human situation and its cellular regulation. In this study, we used the human-derived liver cells Hep G2 as an in vitro model system to address these issues. Uptake of RF by Hep G2 cells was found to be temperature- and energy-dependent but Na+-independent in nature. Uptake seemed to involve a carrier-mediated process as indicated by the saturation as a function of substrate concentration (apparent Km 0.41 ± 0.08 μM), and by the ability of the structural analogs lumiflavin and lumichrome to inhibit the uptake process [inhibition constant (Ki) of 1.84 and 6.32 μM, respectively]. RF uptake was energy dependent, and was inhibited by the -SH group blocker p-chloromercuriphenylsulfonate (p-CMPS) (Ki of 0.10 mM). Specific modulators of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, and protein tyrosine kinase (PTK)-mediated pathways did not affect RF uptake by Hep G2 cells. On the other hand, specific inhibitors of Ca2+/calmodulin-mediated pathway significantly inhibited the uptake process; this effect seemed to be mediated through a decrease in the Vmax of the substrate uptake process. Maintaining Hep G2 cells in a RF-deficient growth medium was associated with a significant up-regulation in the substrate uptake; this effect was specific for RF and was mediated mainly by means of an increase in the Vmax of the uptake process. These results describe, for the first time, the mechanism and cellular regulation of RF uptake by a human-derived liver cellular preparation, and shows the involvement of a carrier-mediated system in the uptake process. Furthermore, the uptake process seems to be regulated by an intracellular Ca2+/calmodulin-mediated pathway and by extracellular substrate levels. J. Cell. Physiol. 176:588–594, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Selenoprotein P (SeP) is an extracellular protein containing ten selenium atoms in the form of selenocysteine, secreted mainly from the liver. About 60% of the whole plasma selenium level is present in SeP, which makes it a useful biomarker of selenium nutritional status. The main functions of SeP are transport and storage of selenium in plasma. It is especially an important protein for the brain, testes and kidneys where the supplementation of the proper amount of Se ensures the synthesis of selenoenzymes with antioxidant properties.Recently, it has been found that SeP uptake in kidneys, testes and brain depends on the apolipoprotein receptor 2 (ApoER2) and lipoprotein megalin receptor (Lrp2). Megalin receptor represents a physiological SeP receptor in kidneys, mediating the re-uptake of secreted SeP from the primary urine. The absence of a functional megalin receptor causes a significant reduction of plasma selenium and the SeP levels as a result of Se excretion. ApoER2 is a SeP receptor in the brain and testes which uptakes Se from the extracellular fluid. Deletion of ApoER2 in mice leads to a lowered selenium level in the brain and testes, neurological dysfunction, production of abnormal spermatozoa, infertility and even death when the subjects are fed a low-selenium diet.  相似文献   

17.
AQP9 is an aquaglyceroporin with a very broad substrate spectrum. In addition to its orthodox nutrient substrates, AQP9 also transports multiple neutral and ionic arsenic species including arsenic trioxide, monomethylarsenous acid (MAsIII) and dimethylarsenic acid (DMAV). Here we discovered a new group of AQP9 substrates which includes two clinical relevant selenium species. We showed that AQP9 efficiently transports monomethylselenic acid (MSeA) with a preference for acidic pH, which has been demonstrated in Xenopus laevis oocyte following the overexpression of human AQP9. Specific inhibitors that dissipate transmembrane proton potential or change the transmembrane pH gradient, such as FCCP, valinomycin and nigericin did not significantly inhibit MSeA uptake, suggesting MSeA transport is not proton coupled. AQP9 was also found to transport ionic selenite and lactate, with much less efficiency compared with MSeA uptake. Selenite and lactate uptake via AQP9 is pH dependent and inhibited by FCCP and nigericin, but not valinomycin. The selenite and lactate uptake via AQP9 can be inhibited by different lactate analogs, indicating that their translocation share similar mechanisms. AQP9 transport of MSeA, selenite and lactate is all inhibited by a previously identified AQP9 inhibitor, phloretin, and the AQP9 substrate arsenite (AsIII). These newly identified AQP9 selenium substrates imply that AQP9 play a significant role in MSeA uptake and possibly selenite uptake involved in cancer therapy under specific microenvironments.  相似文献   

18.
Glucokinase (GK) and its regulatory protein (GKRP) play roles in glucose utilization as well as glucose-sensing process in the brain. In the present study, we compared GK and GKRP protein expressions in the hippocampus of adult (postnatal month 6) and aged (postnatal month 24) gerbils using immunohistochemistry and western blot analysis. Both GK and GKRP immunoreactivities were observed primarily in the pyramidal cells of the hippocampus proper and in the granule cells of the dentate gyrus of the adult and aged hippocampus. GK, not GKRP, immunoreactivity was apparently decreased in the pyramidal and granule cells of the aged group compared with that in the adult group. In addition, western blot analysis also showed that the GK, not GKRP, protein level was significantly decreased in the aged hippocampus. These results indicate that the decrease of GK may be closely related to the reduction of glucose utilization and uptake, although the ability for regulation of GK is maintained in the aged hippocampus.  相似文献   

19.
The first solid‐state solar cells, fabricated ≈140 years ago, were based on selenium; these early studies initiated the modern research on photovoltaic materials. Selenium shows high absorption coefficient and mobility, making it an attractive absorber for high bandgap thin film solar cells. Moreover, the simplicity of a single element absorber, its low‐temperature processing, and intrinsic environmental stability enable the utilization of selenium in extremely cheap and scalable solar cells. In this paper, a detailed study of selenium solar cell fabrication is presented, and the key factors that affect the selenium film morphology and the resulting device efficiency are presented. Specifically, the crystallization process from amorphous film into functional crystalline device is studied. The importance of controlling the process is shown, and methods to align the growth orientation are suggested. Finally, the crystallization process under illumination, which has general importance for the fabrication of thin film photovoltaics, is investigated. Specifically for selenium, the illumination significantly improves the film morphology and leads to device efficiency of 5.2%, with open‐circuit voltage of 0.911 V, short‐circuit current density of 10.2 mA cm?2, and fill factor of 55.0%. These findings form a solid foundation for future improvements of the photovoltaic material and device architecture.  相似文献   

20.
Selenoamino acids are the main form of organic selenium derived from the diet. They are efficiently absorbed in the intestine and reabsorbed in kidney, but the transporter proteins that mediate their cellular uptake have not yet been identified. We here describe the transport pathways of selenoamino acids and derivatives, including selenomethionine, methylselenocysteine, selenocystine, selenobetaine and selenocystamine. Transport studies employed the Xenopus laevis oocyte system expressing the amino acid transporters SIT1, b0,+rBAT, B0 or PAT1 and intestinal Caco-2 and renal OK cell lines that possess a multitude of amino acid transporters. Our results suggest that the major route for the uptake of selenomethionine is the system b0,+ rBAT in Caco-2 cells and B0 in OK cells. Affinity of selenomethionine or methionine for these transporters did not differ, but for SIT1 selenomethionine shows a higher affinity than methionine. Methylselenocysteine displayed a higher affinity than cysteine for all transporters tested and in both OK and Caco-2 cells, system B0 seems to be the primary uptake route. Selenocystine is taken up well by the b0,+ rBAT system, while selenobetaine is a low-affinity substrate only for SIT1 and PAT1. Selenocystamine was not transported by any of the transport systems investigated. When cells were exposed to selenoamino acids, intracellular selenium levels in OK cells considerably exceeded those in Caco-2 cells, indicating effective renal reabsorption capacity. In conclusion, selenoamino acids but not the seleno-derivatives selenobetaine and selenocystamine, are effectively transported by various intestinal and renal amino acid transporters and are thus available for selenium metabolism and therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号