首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caspase-2 is an initiating caspase required for stress-induced apoptosis in various human cancer cells. Recent studies suggest that it can mediate the death function of tumor suppressor p53 and is activated by a multimeric protein complex, PIDDosome. However, it is not clear how caspase-2 exerts its apoptotic function in cells and whether its enzymatic activity is required for the apoptotic function. In this study, we used both in vitro mitochondrial cytochrome c release assays and cell culture apoptosis analyses to investigate the mechanism by which caspase-2 induces apoptosis. We show that active caspase-2, but neither a catalytically mutated caspase-2 nor active caspase-2 with its inhibitor, can cause cytochrome c release. Caspase-2 failed to induce cytochrome c release from mitochondria with Bid(-/-) background, and the release could be restored by addition of the wild-type Bid protein, but not by Bid with the caspase-2 cleavage site mutated. Caspase-2 was not able to induce cytochrome c release from Bax(-/-)Bak(-/-) mitochondria either. In cultured cells, gene deletion of Bax/Bak or Bid abrogated apoptosis induced by overexpression of caspase-2. Collectively, these results indicate that proteolytic activation of Bid and the subsequent induction of the mitochondrial apoptotic pathway through Bax/Bak is essential for apoptosis triggered by caspase-2.  相似文献   

2.
This study was undertaken to determine whether the Bcl-2 family proteins and Smac are regulators of aspirin-mediated apoptosis in a gastric mucosal cell line known as AGS cells. Cells were incubated with varying concentrations of acetylsalicylic acid (ASA; 2-40 mM), with or without preincubation of caspase inhibitors. Apoptosis was characterized by Hoechst staining and DNA-histone-associated complex formation. Antiapoptotic Bcl-2, proapoptotic Bax and Bid, Smac, and cytochrome-c oxidase (COX IV) were analyzed by Western blot analyses from cytosol and mitochondrial fractions. ASA downregulated Bcl-2 protein expression and induced Bax translocation into the mitochondria and cleavage of Bid. In contrast, expression of Smac was significantly decreased in mitochondrial fractions of ASA-treated cells. Bax and Bid involvement in apoptosis regulation was dependent on caspase activation, because caspase-8 inhibition suppressed Bax translocation and Bid processing. Caspase-9 inhibition prevented Smac release from mitochondria. Additionally, increased expression of the oxidative phosphorylation enzyme COX IV was observed in mitochondrial fractions exposed to ASA at concentrations >5 mM. Although caspase-8 inhibition had no effect on aspirin-induced apoptosis and DNA-histone complex formation, caspase-9 inhibition significantly decreased both of these events. We conclude that Bcl-2 protein family members and Smac regulate the apoptotic pathway in a caspase-dependent manner. Our results indicate also that mitochondrial integration and oxidative phosphorylation play a critical role in the pathogenesis of apoptosis in human gastric epithelial cells.  相似文献   

3.
目的:观察松果菊苷(ECH)能否减轻多柔比星(DOX)心脏毒性并初步阐明其作用机制。方法:通过单次腹腔注射大剂量多柔比星(15 mg/kg)建立急性心脏毒性小鼠模型,DOX处理后每日通过腹腔注射ECH(50 mg/kg/day)。实验分组如下:正常组(Control组);单纯松果菊苷处理组(ECH组);多柔比星处理组(DOX组);多柔比星+松果菊苷处理组(DOX+ECH组)。给药5天后检测左心室功能、心肌组织病理改变、氧化应激和心肌凋亡情况。结果:与Control组相比,DOX组小鼠心脏收缩和舒张功能明显减弱,心肌细胞出现空泡变性,心肌MDA含量、凋亡率以及促凋亡蛋白Bax和cleaved Caspase-3表达明显增加,而抑制凋亡蛋白Bcl-2表达量、SOD与GSH-Px活性明显下降。与DOX组相比,松果菊苷能明显改善心脏功能,缓解心肌空泡变性,降低MDA含量、凋亡率以及Bax和cleaved Caspase-3表达量,而提高Bcl-2表达量、SOD与GSH-Px活性(均P 0.05)。结论:松果菊苷可以通过抑制心肌组织氧化应激损伤和凋亡缓解多柔比星诱导的急性心脏毒性。  相似文献   

4.
Our previous studies have demonstrated that oxysophoridine (OSR) has protective effects on cerebral neurons damage in vitro induced by oxygen and glucose deprivation. In this study, we further investigated whether OSR could reduce ischemic cerebral injury in vivo and its possible mechanism. Male Institute of cancer research mice were intraperitoneally injected with OSR (62.5, 125 and 250 mg/kg) for seven successive days, then subjected to brain ischemia induced by the model of middle cerebral artery occlusion. After reperfusion, neurological scores and infarct volume were estimated. Morphological examination of tissues was performed. Apoptotic neurons were detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining. Oxidative stress levels were assessed by measurement of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. The expression of various apoptotic markers as Caspase-3, Bax and Bcl-2 were investigated by immunohistochemistry and Western-blot analysis. OSR pretreatment groups significantly reduced infract volume and neurological deficit scores. OSR decreased the percentage of apoptotic neurons, relieved neuronal morphological damage. Moreover, OSR markedly decreased MDA content, and increased SOD, GSH-Px activities. Administration of OSR (250 mg/kg) significantly suppressed overexpression of Caspase-3 and Bax, and increased Bcl-2 expression. These findings indicate that OSR has a protective effect on focal cerebral ischemic injury through antioxidant and anti-apoptotic mechanisms.  相似文献   

5.
Bid, a member of the pro-apoptotic Bcl-2 protein family, is activated through caspase-8-mediated cleavage into a truncated form (p15 tBid) during TNF-α(tumor necrosis factor α)-induced apoptosis. Activated tBid can induce Bax oligomerization and translocation to mitochondria, triggering the release of cytochrome c, caspase-3 activation and cell apoptosis. However, it is debatable that whether Bid and tBid can interact directly with Bax in living cells. In this study, we used confocal fluorescence microscope, combined with both FRET (fluorescence resonance energy transfer) and acceptor photobleaching techniques, to study the dynamic interaction between Bid and Bax during TNF-α-induced apoptosis in single living cell. In ASTC-a-1 cells, full length Bid induced Bax translocation to mitochondria by directly interacting with Bax transiently in response to TNF-α treatment before cell shrinkage. Next, we demonstrated that, in both ASTC-a-1 and HeLa cells, Bid was not cleaved before cell shrinkage even under the condition that caspase-8 had been activated, but in MCF-7 cells Bid was cleaved. In addition, in ASTC-a-1 cells, caspase-3 activation was a biphasic process and Bid was cleaved after the second activation of caspase-3. In summary, these findings indicate that, FL-Bid (full length-Bid) directly regulated the activation of Bax during TNF-α-induced apoptosis in ASTC-a-1 cells and that the cleavage of Bid occurred in advanced apoptosis.  相似文献   

6.
d-galactose (GAL) causes aging-related changes and oxidative stress in the organism. We investigated the effect of carnosine (CAR) or taurine (TAU), having antioxidant effects, on hepatic injury and oxidative stress in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days/week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days/week) or TAU (2.5 % w/w; in rat chow) for 2 months. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-0050x), and glutathione transferase (GST) activities were determined. Hepatic expressions of B cell lymphoma-2 (Bcl-2), Bax and Ki-67 were evaluated. Serum ALT, AST, hepatic MDA, and PC levels were observed to increase in GAL-treated rats. Hepatic Bax expression, but not Bcl-2, increased, Ki-67 expression decreased. GAL treatment caused decreases in GSH levels, SOD and GSH-Px activities in the liver. Hepatic mRNA expressions of SOD, but not GSH-Px, also diminished. CAR or TAU treatments caused significant decreases in serum ALT and AST activities. These treatments decreased apoptosis and increased proliferation and ameliorated histopathological findings in the livers of GAL-treated rats. Both CAR and TAU reduced MDA and PC levels and elevated GSH levels, SOD and GSH-Px (non significant in TAU?+?GAL group) activities. These treatments did not alter hepatic mRNA expressions of SOD and GSH-Px enzymes. Our results indicate that CAR and TAU restored liver prooxidant status together with histopathological amelioration in GAL-induced liver damage.  相似文献   

7.
目的:观察硫化氢(H2S)对1型糖尿病大鼠肾脏的保护作用及其机制。方法:32只雄性SD大鼠随机分为4组:正常对照(NC)组、糖尿病(DM)组、糖尿病治疗(NaHS+DM)组和NaHS对照(NaHS)组(n=8)。DM组和NaHS+DM组大鼠采用链脲佐菌素(STZ)55 mg/kg腹腔注射诱导1型糖尿病模型。造模成功后,NaHS+DM组和NaHS组采用腹腔注射NaHS溶液56 μmol/kg干预治疗。8周后,测定大鼠24 h尿蛋白含量、肾重指数、空腹血糖、尿素氮、肌酐等指标;HE染色观察肾脏组织形态学变化;测定肾脏组织脂质过氧化物丙二醛(MDA)含量、超氧化物歧化酶(SOD)和Caspase-3的活性;Western blot检测肾脏组织Bcl-2和Bax蛋白表达。结果:与NC组相比,NaHS组各项指标均无显著差异,DM组,24 h尿蛋白含量、肾重指数、空腹血糖、尿素氮和肌酐水平均明显升高;HE染色结果显示肾小球基底膜增厚、系膜基质增多;MDA含量、Caspase-3活性和Bax蛋白表达明显增高;SOD活性和Bcl-2蛋白表达显著降低。与DM组相比,NaHS+DM组肾功能损伤明显减轻,肾脏组织形态学变化明显改善,MDA含量、Caspase-3活性和Bax蛋白表达明显下降,SOD活性和Bcl-2蛋白表达显著增高。结论:H2S对1型糖尿病大鼠肾脏具有保护作用,其机制可能与抑制氧化应激和细胞凋亡有关。  相似文献   

8.
In this study, the cytotoxic activity of selenious-β-lactoglobulin (Se-β-Lg) and the anticancer mechanism were investigated in human lung cancer A549 cells in vitro. MTT assay showed that Se-β-Lg at 200 μg/mL exhibited a significant suppression effect on A549 cells and the maximum inhibition rate reached 90% after 72 h treatment. Flow cytometry analysis revealed that 200 μg/mL of Se-β-Lg induced cell cycle arrest at G0/G1 phase. Cell apoptosis was induced via the generation of reactive oxygen species (ROS) and the decrease of mitochondrial membrane potential (ΔΨm) in a time-dependent manner. Furthermore, Se-β-Lg suppressed the expression of Bcl-2 and improved the level of Bax, leading to the release of cytochrome c and a higher expression of caspase-3 in A549 cells. In summary, Se-β-Lg could induce apoptosis in A549 cells via an intrinsic mitochondrial pathway and it might serve as a potential therapeutic agent for human lung cancer.  相似文献   

9.
Epilepsy is one of the prevalent and major neurological disorders, and approximately one-third of the individuals with epilepsy experience seizures that do not respond well to available medications. We investigated whether oxysophocarpine (OSC) had anticonvulsant and neuroprotective property in the pilocarpine (PILO)-treated mice. Thirty minutes prior to the PILO injection, the mice were administrated with OSC (20, 40, and 80 mg/kg) once. Seizures and electroencephalography (EEG) were observed, and then the mice were killed for Nissl and Fluoro-jade B (FJB) staining. The oxidative stress was measured at 24 h after convulsion. Western blot analysis was used to examine the expressions of the Bax, Bcl-2, and Caspase-3. In this study, we found that pretreatment with OSC (40, 80 mg/kg) significantly delayed the onset of the first convulsion and status epilepticus (SE) and reduced the incidence of SE and mortality. Analysis of EEG recordings revealed that OSC (40, 80 mg/kg) significantly reduced epileptiform discharges. Furthermore, Nissl and FJB staining showed that OSC (40, 80 mg/kg) attenuated the neuronal cell loss and degeneration in hippocampus. In addition, OSC (40, 80 mg/kg) attenuated the changes in the levels of Malondialdehyde (MDA) and strengthened glutathione peroxidase and catalase activity in the hippocampus. Western blot analysis showed that OSC (40, 80 mg/kg) significantly decreased the expressions of Bax, Caspase-3 and increased the expression of Bcl-2. Collectively, the findings of this study indicated that OSC exerted anticonvulsant and neuroprotective effects on PILO-treated mice. The beneficial effects should encourage further studies to investigate OSC as an adjuvant in epilepsy, both to prevent seizures and to protect neurons in brain.  相似文献   

10.
11.
High temperature will cause animal tissues or cells damage. Rosmarinic acid (RA) is a good antioxidant and health care product, but the roles of RA in muscle cells damage and the mechanisms which caused by high temperature is still unknown. In this study, the roles of RA on hyperthermia-induced apoptosis and damage of C2C12 muscle cells were investigated. C2C12 cells were cultured in medium with different concentration (0, 25, 50, 100 µM) RA and treated in 42 °C high temperature to induce cellular apoptosis and damage. Then, these cells were analyzed effect of different dose of RA on cells apoptosis and damage. The results indicated that RA has protective effect on heat-stress induced cellular damage, and the cells have the higher cell viability at the dose of 50 µM RA by MTT assay. Hochest33342/PI double staining showed that the cellular apoptosis of C2C12 cells were decreased in the presence of selected 50 µM RA. Malondialdehyde formation and reactive oxygen species levels were also decreased significantly, but cellular superoxide dismutase activity was increased significantly in the presence of RA even in the condition of 42 °C. Meanwhile, Caspase-3 mRNA expression, Caspase-3 activity, and Bax/Bcl-2 ratio were reduced significantly, but the mRNA expression of Hsp72 was increased significantly in those hyperthermia-induced C2C12 cells in the presence of 50 µM RA. Taken together, the results at least discovered that RA has protective effects on hyperthermia-induced cellular apoptosis and damage of muscle cells by change the expression of stress-genes and increasing intracellular antioxidant capability.  相似文献   

12.
目的:观察人参皂苷Rg1 (Ginsenoside Rg1,GS-Rg1)对丙二醛(Malondialdehyde,MDA)诱导的小鼠骨髓间充质干细胞(Mesenchymal stem cells,MSCs)凋亡的保护作用,并探讨其作用的可能机制.方法:以不同剂量(10、50、100 mg/L)人参皂苷Rg1预处理24 h,在小鼠骨髓MSC体外培养体系中加入MDA,TUNEL法,流式细胞术检测MSC凋亡率,Q-RT-PCR和Westen印迹分析检测Bcl-2、Bax和Caspase-3表达.结果:GS-Rg1可以减少TUNEL阳性细胞百分率及亚G1峰凋亡细胞百分率,增加Bcl-2mRNA及蛋白的表达水平,降低Bax和Caspase-3mRNA及蛋白表达水平.结论:GS-Rg1对MDA诱导小鼠间充质干细胞凋亡具有保护作用,其作用机制可能与增加Bc1-2表达,降低Bax和Caspase-3表达有关.  相似文献   

13.
This study aimed to identify the effect of β-caryophyllene (BCP) pretreatment and elucidate the Nrf2/HO-1 signaling mechanism after focal cerebral ischemia-reperfusion (I-R) injury in rats. Adult male Sprague–Dawley rats were randomly assigned to the sham-operated group, I-R group and BCP pretreated I-R group. At 24 h after reperfusion, neurological deficits and infarct volume were evaluated. Pathological changes of neuron in hippocampuses were observed by Nissil staining and transmission electron microscopy (TEM). Oxidative stress was assessed by malondialdehyde (MDA) level, lipid peroxidation (LPO), nitric oxide (NO), superoxide dismutase (SOD) and Catalase (CAT) activity. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were analysed by Western blotting and real-time quantitative polymerase chain reaction (Q-PCR). The protein expression of Bcl-2 and Bax was determined by immunohistochemistry. Apoptotic cells were detected using TUNEL staining. In I-R group, neurological deficit scores, cerebral infarct volume, MDA levels, LPO content, NO level, expression of Bax and TUNEL-positive cells were found to be increased at 24 h after I-R injury, while SOD activity, CAT activity and expression of Bcl-2 were decreased. However, results in the BCP pretreatment groups were reversed. And the protein and mRNA expressions of Nrf2 and HO-1 were significantly up-regulated in the BCP pretreated I-R group. Results of Nissil staining and TEM scan manifested that BCP remarkablely improved neuronal injury after I-R in rats. All the above suggested that BCP pretreatment played a neuroprotective role in cerebral I-R injury, which might be exerted by upregulating the expression of Nrf2 and HO-1 to ameliorate oxidative damage and neuronal apoptosis.  相似文献   

14.
为研究miR-125a-5p在猪圆环病毒2型(porcine circovirus type 2,PCV2)诱导淋巴细胞凋亡中的作用及其作用机制,以PCV2感染PK-15细胞外泌体孵育的淋巴细胞为研究对象,采用流式细胞术、蛋白质免疫印迹试验(Western blotting)和实时荧光定量PCR,检测淋巴细胞凋亡率及凋亡相关miRNA表达;合成miR-125a-5p模拟物和抑制物转染PK-15细胞,检测miR-125a-5p过表达或抑制表达后细胞凋亡率;采用生物信息学方法预测miR-125a-5p的靶基因,双荧光素酶报告基因检测miR-125a-5p对靶基因的调控;Western blotting检测外泌体孵育淋巴细胞的线粒体凋亡信号通路相关蛋白Bcl-2、Bax、细胞色素C和caspase-3的表达。结果显示,感染PCV2的PK-15细胞分泌的外泌体极显著提高淋巴细胞凋亡率,在一定浓度范围内呈剂量依赖性;与PCV2诱导细胞凋亡相关的miRNA中,miR-125a-5p表达量极显著升高,miR-125a-5p模拟物转染细胞后极显著提高细胞凋亡率;利用TargetScan预测发现,miR-125a-5p与Bcl-2 3''UTR区有结合位点,miR-125a-5p模拟物极显著抑制pmir-Bcl-2 3''UTR-WT荧光素酶活性,对pmir-Bcl-2 3''UTR-MuT的荧光素酶活性无明显改变;外泌体孵育的淋巴细胞Bcl-2表达量显著降低,Bax、细胞色素C的释放和caspase-3表达量显著升高,Bcl-2/Bax的比值极显著降低。这表明,PCV2通过外泌体诱导淋巴细胞上调miR-125a-5p的表达,进而抑制Bcl-2 mRNA和蛋白表达,激活淋巴细胞线粒体凋亡通路诱导细胞凋亡。  相似文献   

15.
Lipopolysaccharide (LPS)-binding protein (LBP) plays a crucial role in the recognition of bacterial components, such as LPS that causes an immune response. The aim of this study was to compare the different effects of recombinant bovine wild LBP and mutant LBP (67 Ala?→?Thr) on the LPS-induced inflammatory response of bovine mammary epithelial cells (BMECs). When BMECs were treated with various concentrations of recombinant bovine lipopolysaccharide-binding protein (RBLBP) (1, 5, 10, and 15 μg/mL) for 12 h, RBLBP of 5 μg/mL increased the apoptosis of BMECs induced by LPS without cytotoxicity, and mutant LBP resulted in a higher cell apoptosis than wild LBP did. By gene-chip microarray and bioinformatics, the data identified 2306 differentially expressed genes that were changed significantly between the LPS-induced inflamed BMECs treated with 5 μg/mL of mutant LBP and the BMECs only treated with 10 μg/mL of LPS (fold change ≥2). Meanwhile, 1585 genes were differently expressed between the inflamed BMECs treated with 5 μg/mL of wild LBP and 10 μg/mL of LPS-treated BMECs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that these differentially expressed genes were involved in different pathways that regulate the inflammation response. It predicted that carriers of this mutation increase the risk for a more severe inflammatory response. Our study provides an overview of the gene expression profile between wild LBP and mutant LBP on the LPS-induced inflammatory response of BMECs, which will lead to further understanding of the potential effects of LBP mutations on bovine mammary glands.  相似文献   

16.
Neurodegenerative diseases are defined by progressive loss of specific neuronal cell populations and are associated with protein aggregates. Oxidative stress has been implicated in their pathological processes. Previous studies revealed that docosahexaenoic acid (DHA) is beneficial in neurodegenerative diseases. Phospholipids (PLs) derived from marine products are rich in DHA and eicosapentaenoic acid (EPA). In the present study, we investigated the neuroprotective effects of DHA-enriched and unenriched phosphatidylcholine (PC) and phosphatidylserine (PS) on oxidative stress induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide in PC12 cells. Cell viability and leakage of lactate dehydrogenase results showed that the neuroprotective effect of PS was superior to that of PC. DHA- and EPA-enriched PC and PS were superior to that without DHA or EPA; in addition, the improvement with n-3 polyunsaturated fatty acid-enriched PS (n-3 PS) was dose dependent. Acridine orange/ethidium bromide staining showed that DHA- and EPA-enriched PS (DHA/EPA-PS) could significantly inhibit apoptosis. Mechanistic studies revealed that EPA-PS and DHA-PS were effective to increase superoxide dismutase (SOD) levels by 48.4 and 58.2 % and total antioxidant capacity (T-AOC) level by 51 and 94 %, respectively, in the H2O2 model. Similar results for SOD and T-AOC levels were shown in the t-BHP model. EPA/DHA-PS could downregulate the messenger RNA level of Caspase-3, Caspase-9, and Bax, upregulate Bcl-2, inhibit Bax, and increase Bcl-2 at protein level. In conclusion, EPA/DHA-PS could protect PC12 cells from oxidative stress and prevent mitochondrial-mediated apoptosis. Our findings indicate that the neuroprotective effects of DHA/EPA-PLs depend on the molecular form. Further studies are necessary to reveal detailed mechanisms and structure–effect relationships.  相似文献   

17.
The BH3-only protein Bid plays a key role in the induction of mitochondrial apoptosis, but its mechanism of action is still not completely understood. Here we studied the two main activation events of Bid: Caspase-8 cleavage and interaction with the membrane bilayer. We found a striking reversible behaviour of the dissociation-association events between the Bid fragments p15 and p7. Caspase-8 cleavage does not induce per se separation of the two Bid fragments, which remain in a stable complex resembling the full length Bid. Detergents trigger a complete dissociation, which can be fully reversed by detergent removal in a range of protein concentrations from 100 μM down to 500 nM. Incubation of cBid with cardiolipin-containing liposomes leads to partial dissociation of the complex. Only p15 (tBid) fragments are found at the membrane, while p7 shows no tendency to interact with the bilayer, but complete removal of p7 strongly increases the propensity of tBid to become membrane-associated. Despite the striking structural similarities of inactive Bid and Bax, Bid does not form oligomers and reacts differently in the presence of detergents and membranes, highlighting clear differences in the modes of action of the two proteins. The partial dissociation of cBid triggered by the membrane is suggested to depend on the strong and specific interaction between p15 and p7. The reversible disassembly and re-assembly of the cBid molecules at the membrane was as well proven by EPR using spin labeled cBid in the presence of isolated mitochondria. The observed dynamic dissociation of the two Bid fragments could allow the assistance to the pore-forming Bax to occur repeatedly and may explain the proposed "hit-and-run" mode of action of Bid at the bilayer.  相似文献   

18.
镉(cadmium,Cd)是一种生物累积性的有毒重金属元素,能够在肾组织大量蓄积并引起肾发生病变和功能损伤。前期研究证实,Cd处理能够引起猪肾PK-15细胞的活性氧(reactive oxygen species,ROS)水平升高和细胞死亡,但详细机制有待进一步研究。本研究以PK-15细胞为研究对象,通过CCK-8检测、透射电镜观察、DCFH-DA标记、JC-1染色、彗星实验和流式细胞术等研究手段,分别检测Cd处理后的细胞活性、形态变化、ROS生成、线粒体膜电位Δψm、DNA损伤及细胞凋亡情况。CCK-8实验结果显示,CdCl2处理后PK-15细胞活性下降,且呈时间和剂量依赖性;形态学观察发现,CdCl2处理引起PK-15细胞皱缩、变圆,细胞核固缩、染色质凝聚,线粒体肿胀、线粒体嵴减少或消失;荧光染色和流式细胞术检测结果显示,CdCl2处理引起PK-15细胞内ROS水平升高、线粒体膜电位Δψm下降和DNA损伤,最终导致细胞凋亡。Western印迹结果显示,CdCl2处理组中促凋亡蛋白质Bax表达量上调,抑凋亡蛋白质Bcl-2表达量下调,并且CdCl2处理组检测到了活化状态的裂解胱天蛋白酶3(cleaved caspase 3)。此外,ROS清除剂N-乙酰基-L-半胱氨酸(N-acetyl-L-cysteine,NAC)缓解了CdCl2引起的线粒体损伤、DNA损伤和细胞凋亡。综上所述,Cd通过引发氧化应激和线粒体损伤诱导PK-15细胞凋亡。  相似文献   

19.
Bcl-2 family proteins are important regulators of apoptosis. They can be pro-apoptotic (e.g. Bid, Bax, and Bak) or anti-apoptotic (e.g. Bcl-2 and Bcl-x(L)). The current study examined Bid-induced apoptosis and its inhibition by Bcl-2. Transfection of Bid led to apoptosis in HeLa cells. In these cells, Bid was processed into active forms of truncated Bid or tBid. Following processing, tBid translocated to the membrane-bound organellar fraction. Bcl-2 co-transfection inhibited Bid-induced apoptosis but did not prevent Bid processing or tBid translocation. On the other hand, Bcl-2 blocked the release of mitochondrial cytochrome c in Bid-transfected cells, suggesting actions at the mitochondrial level. Alkaline treatment stripped off tBid from the membrane-bound organellar fraction of Bid plus Bcl-2-co-transfected cells, but not from cells transfected with only Bid, suggesting inhibition of tBid insertion into mitochondrial membranes by Bcl-2. Bcl-2 also prevented Bid-induced Bax translocation from cytosol to the membrane-bound organellar fraction. Finally, Bcl-2 diminished Bid-induced oligomerization of Bax and Bak within the membrane-bound organellar fraction, shown by cross-linking experiments. In conclusion, Bcl-2 inhibited Bid-induced apoptosis at the mitochondrial level by blocking cytochrome c release, without suppressing Bid processing or activation. Critical steps blocked by Bcl-2 included tBid insertion, Bax translocation, and Bax/Bak oligomerization in the mitochondrial membranes.  相似文献   

20.
Phthalate esters are ubiquitous environmental contaminants that are produced for a variety of common industrial and commercial purposes. We have shown that mono-(2-ethylhexyl) phthalate (MEHP), the toxic metabolite of di-(2-ethylhexyl) phthalate, induces bone marrow B cell apoptosis that is enhanced in the presence of the endogenous prostaglandin 15-deoxy-Delta((12, 14))-PGJ(2) (15d-PGJ(2)). Here, studies were performed to determine whether 15d-PGJ(2)-mediated enhancement of MEHP-induced apoptosis represents activation of an overlapping or complementary apoptosis pathway. MEHP and 15d-PGJ(2) induced significant apoptosis within 8 and 5 h, respectively, in a pro/pre-B cell line and acted cooperatively to induce apoptosis in primary pro-B cells. Apoptosis induced with each chemical was accompanied by activation of a combination of initiator caspases (caspases-2, -8, and -9) and executed by caspase-3. Apoptosis induced with MEHP and 15d-PGJ(2) was reduced in APAF1 null primary pro-B cells and accompanied by alteration of mitochondrial membranes, albeit with different kinetics, indicating an intrinsically activated apoptosis pathway. Significant Bax translocation to the mitochondria supports its role in initiating release of cytochrome c. Both chemicals induced Bid cleavage, a result consistent with a truncated Bid-mediated release of cytochrome c in an apoptosis amplification feedback loop; however, significantly more Bid was cleaved following 15d-PGJ(2) treatment, potentially differentiating the two pathways. Indeed, Bid cleavage and cytochrome c release following 15d-PGJ(2) but not MEHP treatment was profoundly inhibited by Z-VAD-FMK, suggesting that 15d-PGJ(2) activates apoptosis via two pathways, Bax mobilization and protease-dependent Bid cleavage. Thus, endogenous 15d-PGJ(2)-mediated enhancement of environmental chemical-induced apoptosis represents activation of an overlapping but distinct signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号