首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bay of Fundy along the southwest coast of New Brunswick, Canada is one of the most densely stocked finfish aquaculture areas in the world. An inshore multi-species fishery that dates back to the earliest European settlement shares these waters, and has been the economic mainstay of coastal communities. These inshore fishermen are increasingly displaced by the expanding aquaculture industry. A recent study conducted among fishermen in Southwest New Brunswick recorded their observations about the environmental impact of finfish aquaculture and the consequences for their commercial fishery. Fishermen all reported significant environmental degradation around aquaculture sites. Within 2 years of an operation being established, fishermen reported that gravid female lobsters as well as herring avoid the area, scallop and sea urchin shells become brittle, scallop meat and sea urchin roe becomes discolored. The use of chemicals to control sea lice on farmed salmon has also caused lobster, crab and shrimp kills. These and other concerns suggest that more comprehensive and detailed studies are required to establish the environmental and economic interactions of aquaculture and the inshore fishery, as well as on the stocks on which that fishery rely. The study also points to the need for more effective use of fishermen’s knowledge in designing such studies.  相似文献   

2.
《Journal of phycology》2001,37(Z3):12-12
Chopin, T.1, Yarish, C.2, Neefus, C.3, Kraemer, G. P.4, Belyea, E.1, Carmona, R.2, Saunders, G. W.5, Bates, C.5, Page, F.6 & Dowd, M.6 1University of New Brunswick, Centre for Coastal Studies and Aquaculture and Centre for Environmental and Molecular Algal Research, P.O. Box 5050, Saint John, New Brunswick, E2L 4L5, Canada; 2University of Connecticut, Department of Ecology and Evolutionary Biology, 1 University Place, Stamford, Connecticut, 06901-2315, USA; 3University of New Hampshire, Department of Plant Biology, Office of Biometrics, G32 Spaulding Life Science Center, Durham, New Hampshire, 03824, USA; 4State University of New York, Purchase College, Division of Natural Sciences, Purchase, New York, 10577, USA; 5University of New Brunswick, Centre for Environmental and Molecular Algal Research, P.O. Box 4400, Fredericton, New Brunswick, E3B 5A3, Canada; 6Department of Fisheries and Oceans, Biological Station, 531 Brandy Cove Road, St. Andrews, New Brunswick, E5B 2L9, Canada On a regional scale, finfish aquaculture can be one of the significant contributors to coastal nutrification. Contrary to common belief, even in regions of exceptional tidal and apparent “flushing” regimes like the Bay of Fundy, water mixing and transport may be limited and water residency time can be locally prolonged. Hence, nutrient bio-availability remains significant for a relatively long period of time in some areas. Understanding the assimilative capacity of coastal ecosystems under cumulative pressure, then, becomes critical. To avoid pronounced shifts in coastal processes, conversion, not dilution, is the solution by integrating fed aquaculture (finfish) with organic and inorganic extractive aquaculture (shellfish and seaweed) so that the “ wastes” of one resource user become a resource for the others. Such a bioremediative approach provides mutual benefits to co-cultured organisms, and economic diversification and increased profitability per cultivation unit for the aquaculture industry. These concepts will be discussed and illustrated by the results of our on-going projects and we will demonstrate that seaweeds can also be excellent bio-indicators of nutrification/eutrophication revealing symptoms of environmental stress and measuring the zone of influence of an aquaculture site. The aquaculture industry is here to stay in our “coastal scape”: it has its place in the global seafood supply and demand, and in the economy of coastal communities. To help ensure its sustainability, it needs, however, to responsibly change its too often monotrophic practices by adopting polytrophic ones to become better integrated into a broader coastal management framework.  相似文献   

3.
For rapid growth and appropriate pigmentation,Porphyra requires the constant availability of nutrients, especially in summer when temperate waters are generally nutrient depleted. Cultivation near salmon cages allows the alleviation of this seasonal depletion by using the significant loading of fishf arms, which is then valued (wastes become fertilisers) and managed (competition for nutrients between desirable algal crops and problem species associated with severe disturbances). Porphyra,being an extremely efficient nutrient pump, is an excellent candidate for integrated aquaculture for bioremediation and economic diversification. Frequent harvesting provides for constant removal of significant quantities of nutrients from coastal waters, and for production of seaweeds of commercial value. The production of P. yezoensis being limited in the Gulf of Maine, an assessment of the potential of seven native north-west Atlantic Porphyra species is presently in progress. To enable the production of conchospores for net seeding, the phenology of these species and the conditions for their vegetative conchocelis exponential growth, conchosporangium induction, and conchospore maturation were determined. The development of integrated aquaculture systems is a positive initiative for optimising the efficiency of aquaculture operations, while maintaining the health of coastal waters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The development of sustainable integrated aquaculture systems requires combining fed aquaculture (finfish) with extractive inorganic aquaculture (seaweed) and extractive organic aquaculture (shellfish). With the support of AquaNet, the Network of Centers of Excellence in Aquaculture in Canada, we are developing such a system at an industrial pilot scale by co-cultivating salmon (Salmo salar), kelp ( Laminaria saccharina ) and blue mussel ( Mytilus edulis ) at aquaculture sites in the Bay of Fundy, Canada. This presentation will focus on the development of the extractive inorganic component. The entire cycle of rearing Laminaria saccharina has been completed and improved, both in the laboratory and at the integrated sites: release in the laboratory of spores from mature macroscopic sporophytes, seeding of ropes, germination of microscopic gametophytes, sexual maturation of male and female gametophytes, development of zygotes into juvenile sporophytes, which are then transplanted to the sites for rapid grow-out. Another aspect of the project, food safety monitoring of chemical therapeutants and phycotoxins in mussel and kelp cultured in proximity to salmon, will also be described. The productivity, nutrient absorption capacity, and role of the seaweed component are being analyzed so that its appropriate scale to the other components can be defined in order to develop responsible aquaculture practices in which metabolic/physiological processes of the different co-cultured organisms counter-balance each other within acceptable operational limits. Adopting polytrophic strategies will be key to the aquaculture industry to develop its environmentally and economically-balanced diversification and increase its social acceptability within a broader coastal management framework.  相似文献   

5.
The development of sustainable integrated aquaculture systems requires combining fed aquaculture (finfish) with extractive inorganic aquaculture (seaweed) and extractive organic aquaculture (shellfish). With the support of AquaNet, the Network of Centers of Excellence in Aquaculture in Canada, we are developing such a system at an industrial pilot scale by co‐cultivating salmon (Salmo salar), kelp (Laminaria saccharina) and blue mussel (Mytilus edulis) at aquaculture sites in the Bay of Fundy, Canada. This presentation will focus on the development of the extractive inorganic component. The entire cycle of rearing Laminaria saccharina has been completed and improved, both in the laboratory and at the integrated sites: release in the laboratory of spores from mature macroscopic sporophytes, seeding of ropes, germination of microscopic gametophytes, sexual maturation of male and female gametophytes, development of zygotes into juvenile sporophytes, which are then transplanted to the sites for rapid grow‐out. Another aspect of the project, food safety monitoring of chemical therapeutants and phycotoxins in mussel and kelp cultured in proximity to salmon, will also be described. The productivity, nutrient absorption capacity, and role of the seaweed component are being analyzed so that its appropriate scale to the other components can be defined in order to develop responsible aquaculture practices in which metabolic/physiological processes of the different co‐cultured organisms counter‐balance each other within acceptable operational limits. Adopting polytrophic strategies will be key to the aquaculture industry to develop its environmentally and economically‐balanced diversification and increase its social acceptability within a broader coastal management framework.  相似文献   

6.
2006年8~9月,在浙江象山港花鲈(Lateolabrax japonicus)养殖网箱中吊养真江蓠(Gracilaria verrucosa)对网箱养殖造成的水体富营养化进行生态修复研究.通过45d内的平面监测、定点跟踪监测和断面监测,结果表明:该网箱养殖区水体呈严重富营养化状态,营养状态指数(E)为32.00,其营养盐分布由高浓度的中心区向周围150m非养殖水域扩散;真江蓠对养殖区的富营养化海水具有较好的修复效果:江蓠生态修复区及其相邻网箱中水体PO4-P、NO2-N、NH4-N和NO3-N含量显著低于非修复区(P<0.01),修复区海水PO4-P、NO2-N、NH4-N和NO3-N浓度比非修复区分别降低22%~58%、24%~48%、22%~61%和24%~47%.养殖真江蓠45d后,修复区水体DO浓度和透明度显著高于非修复区(P<0.05),DO平均提高28%,透明度平均提高30%;而修复区水体Chl-a浓度显著低于非修复区(P<0.05),平均降低49%.通过建立基于N平衡的鱼藻生态养殖模式,每收获1kg花鲈至少需要匹配江蓠4.7 kg wet wt才可实现对鱼类排放N的完全吸收.因此网箱内栽培江蓠的混合生态养殖模式,可平衡因经济动物养殖所带来的额外营养负荷,有利于实现动物养殖环境的自我修复.  相似文献   

7.
Coastal upwelling regions, which are affected by equatorward‐wind variability, are among the most productive areas of the oceans. It has been suggested that global warming will lead to a general strengthening of coastal upwelling, with important ecological implications and an impact on fisheries. However, in the case of the Iberian upwelling, the long‐term analysis of climatological variables described here reveals a weakening in coastal upwelling. This is linked to a decrease of zonal sea level pressure gradient, and correlated with an observed increase of sea surface temperature and North Atlantic Oscillation. Weakening of coastal upwelling has led to quantifiable modifications of the ecosystem. In outer shelf waters a drop in new production over the last 40 years is likely related to the reduction of sardine landings at local harbors. On the other hand, in inner shelf and Ria waters, the observed weakening of upwelling has slowed down the residual circulation that introduces nutrients to the euphotic layer, and has increased the stability of the water column. The drop in nutrient levels has been compensated by an increase of organic matter remineralization. The phytoplankton community has responded to those environmental trends with an increase in the percentage of dinoflagellates and Pseudonitzschia spp. and a reduction in total diatoms. The former favors the proliferation of harmful algal blooms and reduces the permitted harvesting period for the mussel aquaculture industry. The demise of the sardine fishery and the potential threat to the mussel culture could have serious socio‐economic consequences for the region.  相似文献   

8.
Ecologically friendly aquaculture crops, such as seaweeds, herbivores, omnivores, and detritivores can be cultured using relatively less of our limited natural resources and produce relatively less pollution. They also top FAO’s estimates of aquaculture crops for the 21st century. These crops already comprise nearly 90% of global aquaculture tonnage, >90% of all aquaculture production in China and >60% of production even in North America. Consumers prefer them, most likely due to their low prices. Production costs of organisms low on the food chain are low due to the ability of these organisms to efficiently utilize low-cost, mostly plant-based diets and to recycle their own waste. Thus, ecologically friendly aquaculture is not a dream but a dominant global reality. The less ecologically-friendly aquaculture of salmon, sea bream, fed shrimp, among others, has attracted public opposition to aquaculture, but these crops totaled approximately only 10% of global production in 2004. The profitability of industrialized monocultures of these crops is threatened further by rising costs of energy and feed, environmental regulation compliance, disease, and public opposition. Current monoculture practices and perceptions intrinsic to the aquaculture industry can be turned around into a vision of sustained profitable expansion of carnivores production with trophically lower organisms in ecologically-balanced aquaculture farms. This category of aquaculture, which is the modern intensive form of polyculture practiced in Asia, feeds the waste of carnivore culture to lower trophic level organisms, primarily algae and mollusks. Species are selected based on their ecological functions in addition to their economic potential. Ecologically-balanced farms turn the costly treatment of carnivore waste outside the farm to a revenue-generating process of biofiltration, conversion, and resource recovery into plant and mollusk crops inside the farm. In doing so, they solve several of the major problems faced by modern aquaculture. The aquaculture industry can protect its own interests – and reap major benefits – by understanding the importance of ecological balance, the potential of seaweeds as components in feeds, and the importance of the culture and R&D of low trophic level organisms. The industry should also accept the relevance of environmental, social, and image aspects of aquaculture to its success. Governments have the tools to reward multi-trophic farms with seaweeds by means of tax credits and nutrient credits and to penalize unbalanced monoculture approaches by means of ‘polluter pays’ fines, thereby providing the multi-trophic farms with a significant economic advantage. Such measures have been discussed, but their implementation has been slow.  相似文献   

9.
For many of the world’s poor, aquatic products are critical for food security and health. Because the global population is increasing as wild aquatic stocks are declining, aquaculture is an increasingly important source of aquatic products. We undertook a scoping review of the English-language peer-reviewed literature to evaluate how the research community has examined the impacts of aquaculture on four key determinants of human health: poverty, food security, food production sustainability, and gender equality. The review returned 156 primary research articles. Most research (75%) was focused in Asia, with limited research from Africa (10%) and South America (2%). Most research (80%) focused on freshwater finfish and shrimp production. We used qualitative content analysis of records which revealed 11 themes: famer income; the common environment; shared resources; integrated farming/ polyculture; employment; extensive vs. intensive production; local vs. distant ownership; food security; income equity; gender equality; and input costs. We used quantitative content analysis of records and full-text publications about freshwater finfish and shrimp aquaculture to record the frequency with which themes were represented and the positive or negative impacts of aquaculture associated with each theme. Scatter plots showed that no theme was identified in more than half of all articles and publications for both production types. Farmer income was a theme that was identified commonly and was positively impacted by both shrimp and fresh water finfish aquaculture. Polyculture, employment, and local ownership were identified less often as themes, but were also associated with positive impacts. The common environment and shared resources were more common themes in shrimp aquaculture than freshwater finfish aquaculture research, while polyculture and local ownership were more common themes in freshwater finfish aquaculture than shrimp aquaculture. Gender equality, employment, and food security were themes found in a lower percentage of records than full-text publications for both production types.  相似文献   

10.
Wastes have been rightly referred to as resources out of place. Since household wastewater often intermixes with effluents from industries and agricultural runoff, multidimensional approaches have been made towards maximizing protein production through rational exploitation of available resources. Sewage-fed aquaculture is a unique system and has manifold advantages in developing tropical countries acting as a major source of nutrients for crop farming and aquaculture, economical for sustainable production and helps to combat environmental pollution. The use of municipal wastewater fed to fertilize ponds began in Calcutta in the 1930s; the city now has perhaps the largest wastewater-fed aquaculture system in the world. A large number of people derive their livelihood from the sewage-fed aquaculture using the principles of systems ecology and applying it through ecological engineering. The subject of sewage-fed aquaculture is reviewed in terms of source, chemical nature, diversity pattern, recycling practices, production potential of aquaculture, environmental issues and safety measures for ecofriendly sustainable environmental management strategies.  相似文献   

11.
For the shrimp farming industry of Mexico, disease outbreaks caused by white spot syndrome virus (WSSV) are relatively recent. Efforts to control the virus are assisted by monitoring for its prevalence in aquaculture systems, but few attempts have been made to search for it in carriers from coastal waters. To search for WSSV carriers in the Gulf of California, we made surveys off the coast of Sinaloa, Mexico, in March 2001, November 2001, and September 2003 using polymerase chain reaction (PCR) assays and histopathology. WSSV-positive shrimp were detected only in November 2001, after hurricane Julliete. This suggested possible dispersal of WSSV to the marine environment from infected shrimp farms.  相似文献   

12.
Maintaining growth through intensification in the New Zealand dairy industry is a challenge for various reasons, in particular sustainably managing the large volumes of effluent. Dairy farm effluents have traditionally been treated using two-pond systems that are effective in the removal of carbon and suspended solids, however limited in their ability to remove nutrients. In the past these nutrient-rich two-pond treated effluents were disposed of in surface waters. Current environmental concerns associated with the direct discharge of these effluents to surface waters has prompted in developing technologies to either minimise the nutrient content of the effluent or apply effluents to land. Here, we discuss various approaches and methods of treatment that enable producers to sustainably manage farm effluents, including advanced pond treatment systems, stripping techniques to reduce nutrient concentration, land application strategies involving nutrient budgeting models to minimise environmental degradation and enhance fodder quality. We also discuss alternative uses of farm effluents to produce energy and animal feed.  相似文献   

13.
Penaeid shrimp aquaculture is an important industry in the Americas, and the industry is based almost entirely on the culture of the Pacific White Shrimp, Litopenaeus vannamei. Western Hemisphere shrimp farmers in 14 countries in 2004 produced more than 200,000 metric tons of shrimp, generated more than $2 billion in revenue, and employed more than 500,000 people. Disease has had a major impact on shrimp aquaculture in the Americas since it became a significant commercial entity in the 1970s. Diseases due to viruses, rickettsial-like bacteria, true bacteria, protozoa, and fungi have emerged as major diseases of farmed shrimp in the region. Many of the bacterial, fungal and protozoan caused diseases are managed using improved culture practices, routine sanitation, and the use of chemotherapeutics. However, the virus diseases have been far more problematic to manage and they have been responsible for the most costly epizootics. Examples include the Taura syndrome pandemic that began in 1991-1992 when the disease emerged in Ecuador, and the subsequent White Spot Disease pandemic that followed its introduction to Central America from Asia in 1999. Because of their socioeconomic significance to shrimp farming, seven of the nine crustacean diseases listed by the World Animal Organization (OIE) are virus diseases of shrimp. Of the seven virus diseases of penaeid shrimp, five are native to the Americas or have become enzootic following their introduction. The shrimp virus diseases in the Americas are increasingly being managed by exclusion using a combination of biosecurity and the practice of culturing domesticated specific pathogen-free (SPF) stocks or specific pathogen-resistant (SPR) stocks. Despite the significant challenges posed by disease, the shrimp farming industry of the Americas has responded to the challenges posed by disease and it has developed methods to manage its diseases and mature into a sustainable industry.  相似文献   

14.
海岸带是陆地和海洋之间的生态过渡带,生态保护和开发利用矛盾突出。而生态与环境监测是海岸带环境污染治理与生态保护的重要基础,是海岸带可持续发展的关键。在分析目前海岸带监测存在的问题基础上,以九龙江-厦门湾为研究对象,通过遥感和生物监测、标准衔接、采样和分析仪器以及在线监测系统研发等技术集成,构建了从污染源、环境质量到生态系统以及景观层次的一体化综合生态监测体系。该体系基于常规监测,建立了基于生态系统的河流-河口(近海)生物、水体和沉积物的生态环境一体化监测;探索制定了适用于九龙江河口不同盐度区的营养盐基准/标准系列推荐值;基于营养盐污染入海总量控制目标,构建了河流入海污染物通量在线监测系统;通过遥感监测和实地调查相结合,实现了从关键生态系统到景观的海岸带综合生态监测。基于综合监测体系,构建了兼顾陆海的河口湾区域生态安全评价指标体系,实现区域生态系统可持续发展或生态安全的动态评价。因此,通过上述系统的集成,成功实现了从陆域(流域)到河口(近海)一体化综合生态监测,可为海岸带地区的生态质量改善、污染防治、主要污染物排放总量控制、生态安全评价、生态保护与修复等提供科学支撑。  相似文献   

15.
The North Sea is seriously threatened by a variety of pollution sources. Terrestrially derived effluents are causing extensive environmental damage and changes to ecosystems of both the offshore and coastal waters. Coastal and estuarine communities are being lost to reclamation projects, and there is the future threat of rising sea level associaed with global warming. The spatial and temporal extent of recent anthropogenic changes are largely unknown due to the paucity of background information. The possible role of palaeoecological methodology in providing ‘reference levels’ against which current status can be compared, and their importance for restoration and policy decisions, are presented. The usefulness of diatoms as environmental indicators is illustrated. The extent of natural and anthropogenic changes on coastal habitats are demonstrated by reference to the Holocene evolution of the coastline of The Netherlands. Possible profitable areas for further research are outlined,e.g. a diatom nutrient calibration data set for shallow marine embayments.  相似文献   

16.
沿海滩涂湿地是脆弱的生态敏感区,滩涂围垦是沿海国家和地区拓展土地资源的重要方式之一。近年,沿海地区快速城市化下的滩涂围垦导致了沿海湿地生态系统退化等一系列环境问题。基于环境库兹涅茨曲线(Environmental Kuznets Curve,EKC)模型,以江苏北部沿海湿地为研究区,结合遥感影像和社会经济数据,刻画滩涂围垦过程、强度及社会经济发展过程,揭示近40年江苏沿海滩涂围垦主要类型、阶段性变化特征,阐述滩涂围垦与社会经济发展的耦合关系。研究结果显示,养殖水体扩张是近40年江苏滩涂围垦利用的主要方式;相比养殖水体聚集发展的盐城市,以启东为典型代表的南通市经历了相对较完整的养殖水体的滩涂围垦过程,其养殖水体面积与区域渔业产值存在指数关系,即当人均地区产值达到约9.55万元时,区域渔业产值的增长不再以通过围垦增加养殖水体面积为主要途径;从江苏沿海滩涂围垦来看,滩涂围垦与社会经济发展之间存在典型倒U型曲线关系。苏北滩涂围垦可分为3个阶段,初期阶段(1980-2005年),滩涂围垦随着经济发展而急剧增加;中期(2005-2014年),当人均GDP约为3.64×104元时滩涂围垦速度达最大;后期(2014-2018年),滩涂围垦随着经济发展呈现下降趋势。3个阶段中,单位滩涂围垦面积与人均GDP增长关系由4.11元/km2,17.08元/km2增加至60.77元/km2,呈显著增加的趋势。经济发展,农业和农村经济改革以及国家和地方各级政策均对滩涂围垦具有重要影响。严格的国家环境保护政策将是有效控制滩涂围垦、保护生态环境的重要手段。  相似文献   

17.
The innate immune response of finfish--a review of current knowledge   总被引:3,自引:0,他引:3  
The decline in the fisheries of traditional marine species has been an incentive for the diversification of today's aquaculture sector into the intensive rearing of many finfish species. The increasing interest in commercial farming of different finfish species is expected to result in similar environmental and husbandry-related problems as have been experienced in the development of the salmonid farming industry. An understanding of the biology of the fish species being cultured, in particular the immune response is important for improved husbandry and health management of the species. The innate immune system of fish has generated increasing interest in recent years and is now thought to be of key importance in primary defence and in driving adaptive immunity. This review focuses on key components (cellular and humoral) of the innate immune responses of different fish species of commercial importance.  相似文献   

18.
近年来,水产养殖产业的迅猛发展在带来巨大经济效益的同时,也使周边水质持续恶化。在水产养殖中,微生物在生态平衡和环境保护方面的作用日益明显。着重介绍了养殖水域菌落结构的持续性变化、微生物在水产养殖中的作用以及水产养殖水域微生物群系组成变化的原因,并阐述了改善养殖水环境的生物修复技术,旨在为水产养殖环境微生物的相关研究及其管理提供参考依据。  相似文献   

19.
Hoq  M. Enamul  Islam  M. Nazrul  Kamal  M.  Wahab  M. Abdul 《Hydrobiologia》2001,457(1-3):97-104
We record the decline of Penaeus monodon postlarvae (PL) in five rivers of the world's largest mangrove ecosystem, the Sundarbans, from 1992 to 1999. Shrimp aquaculture in the coastal belt of Bangladesh is dependent on the collection of P. monodon PL from the coastal rivers, and horizontal expansion of shrimp farming has resulted in a severe decline of this wild resource in the Sundarbans. Abundance of P. monodon PL was significantly (P<0.05) reduced in 1999 compared to the previous two-year studies (1992 and 1995) in the rivers. About 12–551 postlarvae of other shrimps, 5–152 finfish postlarvae and 26–1636 other macro-zooplankters are wasted during the collection of a single P. monodon PL. Water temperature and salinity of the river systems are correlated with P. monodon PL abundance. Besides P. monodon PL, inshore fishery of Hilsa ilisha, catfishes and Scylla serrata are also overexploited. The management practices and conservation of fishery resources of Sundarbans are reviewed in the context of its world heritage status.  相似文献   

20.
The mangrove forest of Bangladesh, the largest continuous mangrove bulk, is one of the most important features of the coastal area of the country. The existence of the mangrove has increased the values of other coastal and marine resources such as the coastal and marine fisheries by increasing productivity and supporting a wide biological diversity. The deltaic mangrove of Bangladesh is ecologically different from the other, mostly nondeltaic mangroves of the world and is unique also in its floral and faunal assemblage; therefore, a number of endangered plants and animals that are extinct from other parts of the world, are existing in Bangladesh mangrove. However, the mangrove has been under intensive pressure of exploitation for the last few decades which, in addition to direct clearance and conversion have placed the mangrove under extreme threat. Shrimp farming is the most destructive form of resource use the mangrove has been converted to, which contributed significantly to mangrove destruction with a corresponding loss of biological resources. Concerns have been raised among the ecologists, biologists, managers and policy makers since the early 1990s; deliberate destruction of mangrove and unplanned development of coastal aquaculture particularly shrimp aquaculture have been put under extreme criticism and the sustainability has been questioned. The present status of the mangrove resources including mangrove fisheries and aquaculture and management practices have been reviewed in this paper; impacts of different forms of human interventions and resource use have also been discussed. It is suggested that the management options and the policy aspects should be critically reviewed and amended accordingly; beneficiaries and stakeholders at all levels of resource exploitation must take part and contribute to conservation and management. An immediate need for mangrove conservation has been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号