首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rex regulatory proteins of human T-cell leukemia virus type I (HTLV-I) and bovine leukemia virus (BLV), and the Rev protein of human immunodeficiency virus type 1 (HIV-1), promote the cytoplasmic accumulation and translation of viral messenger mRNAs encoding structural proteins. Rev and Rex act through cis-acting elements on the viral RNA; these elements are named Rev- and Rex-responsive elements, or RRE and RXRE, respectively. We show that the Rex proteins of HTLV-I and BLV are interchangeable, but only the Rex protein of HTLV-I can substitute for Rev of HIV-1. Rex of HTLV-I and Rev of HIV-1 appear to act on RRE by similar mechanisms. Rev of HIV-1 does not act on the RXRE of HTLV-I or BLV. The nonreciprocal action of Rev and Rex suggests that these factors interact directly with the cis-acting RNA elements of the two viruses.  相似文献   

2.
A Bar-Shira  A Panet    A Honigman 《Journal of virology》1991,65(10):5165-5173
Sequence analysis of the human T-cell leukemia virus type I (HTLV-I) long terminal repeat (LTR) does not reveal a polyadenylation consensus sequence, AAUAAA, close to the polyadenylation site at the 3' end of the viral RNA. Using site-directed mutagenesis, we demonstrated that two cis-acting signals are required for efficient RNA processing in HTLV-I LTR: (i) a remote AAUAAA hexamer at a distance of 276 nucleotides upstream of the polyadenylation site, and (ii) the 20-nucleotide GU-rich sequence immediately downstream from the poly(A) site. It has been postulated that the folding of RNA into a secondary structure juxtaposes the AAUAAA sequence, in a noncontiguous manner, to within 14 nucleotides of the polyadenylation site. To test this hypothesis, we introduced deletions and point mutations within the U3 and R regions of the LTR. RNA 3'-end processing occurred efficiently at the authentic HTLV-I poly(A) site after deletion of the sequences predicted to form the secondary structure. Thus, the genetic analysis supports the hypothesis that folding of the HTLV-I RNA in the U3 and R regions juxtaposes the AAUAAA sequence and the poly(A) site to the correct functional distance. This unique arrangement of RNA-processing signals is also found in the related retroviruses HTLV-II and bovine leukemia virus.  相似文献   

3.
4.
Rex-dependent nucleolar accumulation of HTLV-I mRNAs   总被引:8,自引:0,他引:8  
  相似文献   

5.
6.
7.
P L Green  M T Yip  Y Xie    I S Chen 《Journal of virology》1992,66(7):4325-4330
The Rex protein of human T-cell leukemia virus types I (HTLV-I) and II (HTLV-II) regulates the expression of the viral structural genes and is critical for viral replication. Rex acts by specifically binding to RNAs containing sequences of the R region of the 5' long terminal repeat. Two forms of Rex detected in HTLV-II-infected cells, p26rex and p24rex, differ in the extent of serine phosphorylation. Two-dimensional phosphopeptide analysis indicates that p26rex is extensively phosphorylated at multiple sites. Using a sensitive immunobinding assay, we show that the phosphorylation state of Rex determines the efficiency of binding of Rex to HTLV-II target RNAs. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether virus exists in a latent or productive state. These studies also suggest that phosphorylation of RNA-binding regulatory proteins is a more general mechanism of gene regulation.  相似文献   

8.
9.
Expression of the human T-cell leukemia virus type I (HTLV-I) rex gene is a prerequisite for the expression of the retroviral structural proteins. We have generated internal deletion mutants of this 27-kDa nucleolar trans-acting gene product to define functional domains in the Rex protein. The phenotype of the various mutant proteins was tested on the homologous HTLV-I rex response element sequence and the heterologous human immunodeficiency virus type 1 (HIV-1) rev response element sequence. Our results indicate that a region between amino acid residues 55 and 132 in the 189-amino-acid Rex protein is required for Rex-mediated trans activation on both retroviral response element sequences. In addition, substitution of the Rex nuclear localization signal by a sequence of the HIV-1 rev gene product targets the Rex protein to the correct subcellular compartment required for Rex function.  相似文献   

10.
11.
3'-Untranslated regions (UTRs) of genes often contain key regulatory elements involved in gene expression control. A high degree of evolutionary conservation in regions of the 3'-UTR suggests important, conserved elements. In particular, we are interested in those elements involved in regulation of 3' end formation. In addition to canonical sequence elements, auxiliary sequences likely play an important role in determining the polyadenylation efficiency of mammalian pre-mRNAs. We identified highly conserved sequence elements upstream of the AAUAAA in three human collagen genes, COL1A1, COL1A2, and COL2A1, and demonstrate that these upstream sequence elements (USEs) influence polyadenylation efficiency. Mutation of the USEs decreases polyadenylation efficiency both in vitro and in vivo, and inclusion of competitor oligoribonucleotides representing the USEs specifically inhibit polyadenylation. We have also shown that insertion of a USE into a weak polyadenylation signal can enhance 3' end formation. Close inspection of the COL1A2 3'-UTR reveals an unusual feature of two closely spaced, competing polyadenylation signals. Taken together, these data demonstrate that USEs are important auxiliary polyadenylation elements in mammalian genes.  相似文献   

12.
13.
14.
The biogenesis of a number of RNA species in eukaryotic cells requires 3' processing. To determine the enzymes responsible for these trimming events, we created yeast strains lacking specific 3' to 5' exonucleases. In this work, we describe the analysis of three members of the RNase D family of exonucleases (Rex1p, Rex2p and Rex3p). This work led to three important conclusions. First, each of these exonucleases is required for the processing of distinct RNAs. Specifically, Rex1p, Rex2p and Rex3p are required for 5S rRNA, U4 snRNA and MRP RNA trimming, respectively. Secondly, some 3' exonucleases are redundant with other exonucleases. Specifically, Rex1p and Rex2p function redundantly in 5.8S rRNA maturation, Rex1p, Rex2p and Rex3p are redundant for the processing of U5 snRNA and RNase P RNA, and Rex1p and the exonuclease Rrp6p have an unknown redundant essential function. Thirdly, the demonstration that the Rex proteins can affect reactions that have been attributed previously to the exosome complex indicates that an apparently simple processing step can be surprisingly complex with multiple exonucleases working sequentially in the same pathway.  相似文献   

15.
16.
17.
We have investigated the role of the human papillomavirus type 16 (HPV-16) early untranslated region (3' UTR) in HPV-16 gene expression. We found that deletion of the early 3' UTR reduced the utilization of the early polyadenylation signal and, as a consequence, resulted in read-through into the late region and production of late L1 and L2 mRNAs. Deletion of the U-rich 3' half of the early 3' UTR had a similar effect, demonstrating that the 57-nucleotide U-rich region acted as an enhancing upstream element on the early polyadenylation signal. In accordance with this, the newly identified hFip1 protein, which has been shown to enhance polyadenylation through U-rich upstream elements, interacted specifically with the HPV-16 upstream element. This upstream element also interacted specifically with CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein, suggesting that these factors were either enhancing or regulating polyadenylation at the HPV-16 early polyadenylation signal. Mutational inactivation of the early polyadenylation signal also resulted in increased late mRNA production. However, the effect was reduced by the activation of upstream cryptic polyadenylation signals, demonstrating the presence of additional strong RNA elements downstream of the early polyadenylation signal that direct cleavage and polyadenylation to this region of the HPV-16 genome. In addition, we identified a 3' splice site at genomic position 742 in the early region with the potential to produce E1 and E4 mRNAs on which the E1 and E4 open reading frames are preceded only by the suboptimal E6 AUG. These mRNAs would therefore be more efficiently translated into E1 and E4 than previously described HPV-16 E1 and E4 mRNAs on which E1 and E4 are preceded by both E6 and E7 AUGs.  相似文献   

18.
We have analyzed the action of the Rev and Tev proteins of human immunodeficiency virus type 1 (HIV-1) and of the Rex protein of human T-cell leukemia virus type I (HTLV-I) on a series of Rev-responsive element (RRE) mutants. The minimum continuous RRE region necessary and sufficient for Rev function was determined to be 204 nucleotides. Interestingly, this region was not sufficient for Tev or Rex function. These proteins require additional sequences, which may stabilize the structure of the RRE or may contain additional sequence-specific elements. Internal RRE deletions revealed that the targets for Rev and Rex can be separated, since mutants responding to Rev and not Rex and vice versa were identified. Tev was active on both types of mutants, suggesting that it has a more relaxed specificity than do both Rev and Rex proteins. Although Rev and Rex targets within the RRE appear to be distinct, the trans-dominant mutant RevBL prevents the RRE interaction with Rex. RevBL cannot inhibit the function of Rex on RRE deletions that lack the Rev-responsive portion. These results indicate the presence of distinct sites within the RRE for interaction with these proteins. The binding sites for the different proteins do not function independently and may interfere with one another. Mutations affecting the RRE may change the accessibility and binding characteristics of the different binding sites.  相似文献   

19.
Cytoplasmic poly(A) elongation is one mechanism that regulates translational recruitment of maternal mRNA in early development. In Xenopus laevis, poly(A) elongation is controlled by two cis elements in the 3' untranslated regions of responsive mRNAs: the hexanucleotide AAUAAA and a U-rich structure with the general sequence UUUUUAAU, which is referred to as the cytoplasmic polyadenylation element (CPE). B4 RNA, which contains these sequences, is polyadenylated during oocyte maturation and maintains a poly(A) tail in early embryos. However, cdk2 RNA, which also contains these sequences, is polyadenylated during maturation but deadenylated after fertilization. This suggests that cis-acting elements in cdk2 RNA signal the removal of the poly(A) tail at this time. By using poly(A) RNA-injected eggs, we showed that two elements which reside 5' of the CPE and 3' of the hexanucleotide act synergistically to promote embryonic deadenylation of this RNA. When an identical RNA lacking a poly(A) tail was injected, these sequences also prevented poly(A) addition. When fused to CAT RNA, the cdk2 3' untranslated region, which contains these elements, as well as the CPE and the hexanucleotide, promoted poly(A) addition and enhanced chloramphenicol acetyltransferase activity during maturation, as well as repression of these events after fertilization. Incubation of fertilized eggs with cycloheximide prevented the embryonic inhibition of cdk2 RNA polyadenylation but did not affect the robust polyadenylation of B4 RNA. This suggests that a maternal mRNA, whose translation occurs only after fertilization, is necessary for the cdk2 deadenylation or inhibition of RNA polyadenylation. This was further suggested when poly(A)+ RNA isolated from two-cell embryos was injected into oocytes that were then allowed to mature. Such oocytes became deficient for cdk2 RNA polyadenylation but remained proficient for B4 RNA polyadenylation. These data show that CPE function is developmentally regulated by multiple sequences and factors.  相似文献   

20.
F Gebauer  W Xu  G M Cooper    J D Richter 《The EMBO journal》1994,13(23):5712-5720
The c-mos proto-oncogene product is a key element in the cascade of events leading to meiotic maturation of vertebrate oocytes. We have investigated the role of cytoplasmic polyadenylation in the translational control of mouse c-mos mRNA and its contribution to meiosis. Using an RNase protection assay we show that optimal cytoplasmic polyadenylation of c-mos mRNA requires three cis elements in the 3' UTR: the polyadenylation hexanucleotide AAUAAA and two U-rich cytoplasmic polyadenylation elements (CPEs) located 4 and 51 nucleotides upstream of the hexanucleotide. When fused to CAT coding sequences, the wild-type 3' UTR of c-mos mRNA, but not a 3' UTR containing mutations in both CPEs, confers translational recruitment during maturation. This recruitment coincides with maximum polyadenylation. To assess whether c-mos mRNA polyadenylation is necessary for maturation of mouse oocytes, we have ablated endogenous c-mos mRNA by injecting an antisense oligonucleotide, which results in a failure to progress to meiosis II after emission of the first polar body. Such antisense oligonucleotide-injected oocytes could be efficiently rescued by co-injection of a c-mos mRNA carrying a wild-type 3' UTR. However, co-injection of a c-mos mRNA lacking functional CPEs substantially lowered the rescue activity. These results demonstrate that translational control of c-mos mRNA by cytoplasmic polyadenylation is necessary for normal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号