首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
PISTILLATA is a B-class floral organ identity gene required for the normal development of petals and stamens in Arabidopsis. PISTILLATA expression is induced in the stage 3 flowers (early expression) and is maintained until anthesis (late expression). To explore in more detail the developmentally regulated gene expression of PISTILLATA, we have analyzed the PISTILLATA promoter using uidA (beta)-glucuronidase gene) fusion constructs (PI::GUS) in transgenic Arabidopsis. Promoter deletion analyses suggest that early PISTILLATA expression is mediated by the distal region and that late expression is mediated by the proximal region. Based on the PI::GUS expression patterns in the loss- and gain-of-function alleles of meristem or organ identity genes, we have shown that LEAFY and UNUSUAL FLORAL ORGANS induce PISTILLATA expression in a flower-independent manner via a distal promoter, and that PISTILLATA and APETALA3 maintain PISTILLATA expression (autoregulation) in the later stages of flower development via a proximal promoter. In addition, we have demonstrated that de novo protein synthesis is required for the PISTILLATA autoregulatory circuit.  相似文献   

5.
6.
BB Zheng  XM Wu  XX Ge  XX Deng  JW Grosser  WW Guo 《PloS one》2012,7(8):e43758
Male sterile and seedless characters are highly desired for citrus cultivar improvement. In our breeding program, a male sterile cybrid pummelo, which could be considered as a variant of male fertile pummelo, was produced by protoplast fusion. Herein, ecotopic stamen primordia initiation and development were detected in this male sterile cybrid pummelo. Histological studies revealed that the cybrid showed reduced petal development in size and width, and retarded stamen primordia development. Additionally, disorganized cell proliferation was also detected in stamen-like structures (fused to petals and/or carpel). To gain new insight into the underlying mechanism, we compared, by RNA-Seq analysis, the nuclear gene expression profiles of floral buds of the cybrid with that of fertile pummelo. Gene expression profiles which identified a large number of differentially expressed genes (DEGs) between the two lines were captured at both petal primordia and stamen primordia distinguishable stages. For example, nuclear genes involved in nucleic acid binding and response to hormone synthesis and metabolism, genes required for floral bud identification and expressed in particular floral whorls. Furthermore, in accordance with flower morphology of the cybrid, expression of PISTILLATA (PI) was reduced in stamen-like structures, even though it was restricted to correct floral whorls. Down-regulated expression of APETALA3 (AP3) coincided with that of PI. These finding indicated that, due to their whorl specific effects in flower development, citrus class-B MADS-box genes likely constituted 'perfect targets' for CMS retrograde signaling, and that dysfunctional mitochondria seemed to cause male sterile phenotype in the cybrid pummelo.  相似文献   

7.
8.
Organ loss is an evolutionary phenomenon commonly observed in all kinds of multicellular organisms. Across the angiosperms, petals have been lost several times over the course of their diversification. We examined the evolution of petal and stamen identity genes in the Piperales, a basal lineage of angiosperms that includes the perianthless (with no petals or sepals) families Piperaceae and Saururaceae as well as the Aristolochiaceae, which exhibit a well-developed perianth. Here, we provide evidence for relaxation of selection on the putative petal and stamen identity genes, homologs of APETALA3 and PISTILLATA, following the loss of petals in the Piperales. Our results are particularly interesting as the B-class genes are not only responsible for the production of petals but are also central to stamen identity, the male reproductive organs that show no modification in these plants. Relaxed purifying selection after the loss of only one of these organs suggests that there has been dissociation of the functional roles of these genes in the Piperales.  相似文献   

9.
Activation of the Arabidopsis B class homeotic genes by APETALA1   总被引:16,自引:0,他引:16       下载免费PDF全文
Ng M  Yanofsky MF 《The Plant cell》2001,13(4):739-754
  相似文献   

10.
Petaloid organs are a major component of the floral diversity observed across nearly all major clades of angiosperms. The variable morphology and development of these organs has led to the hypothesis that they are not homologous but, rather, have evolved multiple times. A particularly notable example of petal diversity, and potential homoplasy, is found within the order Ranunculales, exemplified by families such as Ranunculaceae, Berberidaceae, and Papaveraceae. To investigate the molecular basis of petal identity in Ranunculales, we used a combination of molecular phylogenetics and gene expression analysis to characterize APETALA3 (AP3) and PISTILLATA (PI) homologs from a total of 13 representative genera of the order. One of the most striking results of this study is that expression of orthologs of a single AP3 lineage is consistently petal-specific across both Ranunculaceae and Berberidaceae. We conclude from this finding that these supposedly homoplastic petals in fact share a developmental genetic program that appears to have been present in the common ancestor of the two families. We discuss the implications of this type of molecular data for long-held typological definitions of petals and, more broadly, the evolution of petaloid organs across the angiosperms.  相似文献   

11.
12.
13.
APETALA3(AP3)/DEFICIENS(DEF)和PISTILLATA(PI)/GLOBOSA(GLO)为植物花器官发育B类基因,控制双子叶植物花瓣和雄蕊的发育,它们属于MADS-box基因家族,编码转录因子,这些基因的突变能导致花瓣转变为萼片,雄蕊转变为心皮。近年来已经在多种植物中克隆到了AP3/DEF和PI/GLO基因,AP3/DEF和PI/GLO基因在拟南芥中只在花器官中表达,而在玉米等植物维管束、叶片等组织中也有表达。现对有关AP3/DEF和PI/GLO基因表达及其在植物系统发育学研究方面的进展进行综述。  相似文献   

14.
15.
16.
17.
18.
DEFICIENS (DEF) and GLOBOSA (GLO) function in petal and stamen organ identity in Antirrhinum and are orthologs of APETALA3 and PISTILLATA in Arabidopsis. These genes are known as B-function genes for their role in the ABC genetic model of floral organ identity. Phylogenetic analyses show that DEF and GLO are closely related paralogs, having originated from a gene duplication event after the separation of the lineages leading to the extant gymnosperms and the extant angiosperms. Several additional gene duplications followed, providing multiple potential opportunities for functional divergence. In most angiosperms studied to date, genes in the DEF/GLO MADS-box subfamily are expressed in the petals and stamens during flower development. However, in some angiosperms, the expression of DEF and GLO orthologs are occasionally observed in the first and fourth whorls of flowers or in nonfloral organs, where their function is unknown. In this article we review what is known about function, phylogeny, and expression in the DEF/GLO subfamily to examine their evolution in the angiosperms. Our analyses demonstrate that although the primary role of the DEF/GLO subfamily appears to be in specifying the stamens and inner perianth, several examples of potential sub- and neofunctionalization are observed.  相似文献   

19.
20.
During Arabidopsis flower development a set of homeotic genes plays a central role in specifying the distinct floral organs of the four whorls, sepals in the outermost whorl, and petals, stamens, and carpels in the sequentially inner whorls. The current model for the identity of the floral organs includes the SEPALLATA genes that act in combination with the A, B and C genes for the specification of sepals, petals, stamens and carpels. According to this new model, the floral organ identity proteins would form different complexes of proteins for the activation of the downstream genes. We show that the presence of SEPALLATA proteins is needed to activate the AG downstream gene SHATTERPROOF2, and that SEPALLATA4 alone does not provide with enough SEPALLATA activity for the complex to be functional. Our results suggest that CAULIFLOWER may be part of the protein complex responsible for petal development and that it is fully required in the absence of APETALA1 in 35S::SEP3 plants. In addition, genetic and molecular experiments using plants constitutively expressing SEPALLATA3 revealed a new role of SEPALLATA3 in activating other B and C function genes. We molecularly prove that the ectopic expression of SEPALLATA3 is sufficient to ectopically activate APETALA3 and AGAMOUS. Remarkably, plants that constitutively express both SEPALLATA3 and LEAFY developed ectopic petals, carpels and ovules outside of the floral context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号