首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The active site lysyl residue (Lys258) of E. coli aspartate amino transferase was substituted for an arginyl residue by oligonucleotide-directed, site-specific mutagenesis. The mutant enzyme was obviously unable to form an aldimine bond with pyridoxal 5'-phosphate but firmly bound the coenzyme. The finding that the mutation did not lead to entire loss in the enzymic activity suggests that Lys258 may not be essential but auxiliary for enzymic catalysis. It is also conceived that the positive charge provided by Arg258 may contribute to the enzymic catalysis.  相似文献   

5.
6.
7.
Substitution of a lysyl residue for Arg-386 of Escherichia coli aspartate aminotransferase resulted in an extensive decrease in Vmax values (0.8% with the aspartate-2-oxoglutarate pair and 0.2% with the glutamate-oxalacetate pair, compared with the corresponding values for the wild-type enzyme). Kinetic analysis of the four sets of half-reactions, the pyridoxal form of the enzyme with aspartate or glutamate and the pyridoxamine form with 2-oxoglutarate or oxalacetate, allowed us to define the independent effect of the mutation on the reactivity of each substrate. Decrease in the first order rate constant (kmax) was more pronounced in the reactions with five-carbon substrates (glutamate and 2-oxoglutarate) than in those with four-carbon substrates (aspartate and oxalacetate), while the increase in the apparent dissociation constant (Kd) was greater for four-carbon substrates than for five-carbon substrates. The decrease of overall catalytic efficiency as judged by the values, kmax/Kd, was more pronounced in the reactions with five-carbon substrates than in those with four-carbon substrates. Affinities for substrate analogs such as succinate, glutarate, 2-methylaspartate, and erythro-3-hydroxyaspartate, were also considerably decreased by the mutation of the enzyme. These findings indicate that the side chain of the lysyl residue, although it bears a positive charge similar to that of the arginyl residue, is not structurally adequate for the productive binding of a substrate during catalysis.  相似文献   

8.
D L Smith  S C Almo  M D Toney  D Ringe 《Biochemistry》1989,28(20):8161-8167
The three-dimensional structure of a mutant of the aspartate aminotransferase from Escherichia coli, in which the active-site lysine has been substituted by alanine (K258A), has been determined at 2.8-A resolution by X-ray diffraction. The mutant enzyme contains pyridoxamine phosphate as cofactor. The structure is compared to that of the mitochondrial aspartate aminotransferase. The most striking differences, aside from the absence of the lysine side chain, occur in the positions of the pyridoxamine group and of tryptophan 140.  相似文献   

9.
10.
The conjoint substitution of three active-site residues in aspartate aminotransferase (AspAT) of Escherichia coli (Y225R/R292K/R386A) increases the ratio of L-aspartate beta-decarboxylase activity to transaminase activity >25 million-fold. This result was achieved by combining an arginine shift mutation (Y225R/R386A) with a conservative substitution of a substrate-binding residue (R292K). In the wild-type enzyme, Arg(386) interacts with the alpha-carboxylate group of the substrate and is one of the four residues that are invariant in all aminotransferases; Tyr(225) is in its vicinity, forming a hydrogen bond with O-3' of the cofactor; and Arg(292) interacts with the distal carboxylate group of the substrate. In the triple-mutant enzyme, k(cat)' for beta-decarboxylation of L-aspartate was 0.08 s(-1), whereas k(cat)' for transamination was decreased to 0.01 s(-1). AspAT was thus converted into an L-aspartate beta-decarboxylase that catalyzes transamination as a side reaction. The major pathway of beta-decarboxylation directly produces L-alanine without intermediary formation of pyruvate. The various single- or double-mutant AspATs corresponding to the triple-mutant enzyme showed, with the exception of AspAT Y225R/R386A, no measurable or only very low beta-decarboxylase activity. The arginine shift mutation Y225R/R386A elicits beta-decarboxylase activity, whereas the R292K substitution suppresses transaminase activity. The reaction specificity of the triple-mutant enzyme is thus achieved in the same way as that of wild-type pyridoxal 5'-phosphate-dependent enzymes in general and possibly of many other enzymes, i.e. by accelerating the specific reaction and suppressing potential side reactions.  相似文献   

11.
Aspartate aminotransferase (EC 2.6.1.1) was purified to homogeneity from cell extracts of a newly isolated thermophilic bacterium, Bacillus sp. strain YM-2. The enzyme consisted of two subunits identical in molecular weight (Mr, 42,000) and showed microheterogeneity, giving two bands with pIs of 4.1 and 4.5 upon isoelectric focusing. The enzyme contained 1 mol of pyridoxal 5'-phosphate per mol of subunit and exhibited maxima at about 360 and 415 nm in absorption and circular dichroism spectra. The intensities of the two bands were dependent on the buffer pH; at neutral or slightly alkaline pH, where the enzyme showed its maximum activity, the absorption peak at 360 nm was prominent. The enzyme was specific for L-aspartate and L-cysteine sulfinate as amino donors and alpha-ketoglutarate as an amino acceptor; the KmS were determined to be 3.0 mM for L-aspartate and 2.6 mM for alpha-ketoglutarate. The enzyme was most active at 70 degrees C and had a higher thermostability than the enzyme from Escherichia coli. The N-terminal amino acid sequence (24 residues) did not show any similarity with the sequences of mammalian and E. coli enzymes, but several residues were identical with those of the thermoacidophilic archaebacterial enzyme recently reported.  相似文献   

12.
13.
Polymorphism of non-genetic character was discovered in aspartate aminotransferase (AAT) of bull semen. A relationship was found between the enzyme heterogeneity and susceptibility of plasmatic membranes of spermatozoa to cryogenic damage. The relation changed with the bull's age.  相似文献   

14.
Acylation of aspartate aminotransferase   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Acetylation of aspartate aminotransferase from pig heart inhibits completely the enzymic activity when the coenzyme is in the amino form (pyridoxamine phosphate) or when the coenzyme has been removed, but not when the coenzyme is in the aldehyde form (pyridoxal phosphate). 2. The group the acylation of which is responsible for the inhibition has been identified with the in-amino group of a lysine residue at the coenzyme-binding site. Moreover, in the pyridoxamine-enzyme the amino group of the coenzyme is also acetylated. 3. The reactivity of the coenzyme-binding lysine residue is greatly different in the pyridoxamine-enzyme and in the apoenzyme, suggesting the possibility of an interaction of its in-amino group with pyridoxamine or with other groups on the protein.  相似文献   

15.
Photoinactivation of aspartate aminotransferase   总被引:1,自引:0,他引:1  
  相似文献   

16.
A Planas  J F Kirsch 《Biochemistry》1991,30(33):8268-8276
The active-site essential catalytic residue of aspartate aminotransferase, Lys 258, has been converted to Cys (K258C) by site-directed mutagenesis. This mutant retains less than 10(-6) of the wild-type activity with L-aspartate. The deleted general base was functionally replaced by selective (with respect to the other five cysteines in wild type) aminoethylation of the introduced Cys 258 with (2-bromoethyl)amine following reversible protection of the nontarget sulfhydryl groups at different stages of unfolding. The chemically elaborated mutant (K258C-EA) is 10(5) times more reactive than is K258C and has a kcat value of approximately 7% of that of wild type (WT). Km and KI values are similar to those for WT. The acidic pKa controlling V/KAsp is shifted from 7.3 (WT) to 6.0 (mutant). V/K values for amino acids are approximately 3% of those found for WT, whereas they are approximately 20% for keto acids. The value of DV increases from 1.6 for WT to 3.4 for the mutant, indicating that C alpha proton abstraction constitutes a more significant kinetic barrier for the latter enzyme. A smaller, but still significant, increase in D(V/KAsp) from 1.9 in WT to 3.0 in the mutant shows that the forward and reverse commitment factors are inverted by the mutation. The acidic limb of the V/KAsp versus pH profile, is lowered by 1.3 pH units, probably reflecting the similar difference in the basicity of the epsilon-NH2 group in gamma-thialysine versus that in lysine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The cofactor activation of the apoenzyme of pig heart cytosolic aspartate aminotransferase was studied in various buffers. Cationic buffers are shown to allow maximal reconstitution in the pH range of 5.0 to 9.0. Anionic buffers made up of mono- and dicarboxylates are found to affect reconstitution in a pH-dependent manner. At low pH, the carboxylates strongly inhibit reconstitution, but at high pH, they show less effect. In contrast, the more potent inhibitor Pi shows the opposite pH profile. Dicarboxylates are considerably more inhibitory than monocarboxylates. Substantial protection against inhibition by a number of carboxylates may be achieved by the addition of sodium chloride.  相似文献   

18.
Analysis of Michaelis--Menten kinetics revealed that the enzyme in solution and the crystalline cytosolic aspartate aminotransferase (EC 2.6.1.1) possess a functional nonequivalence of active sites of the enzyme dimer for two substrates--aspartate and 2-oxoglutarate.  相似文献   

19.
Separate enzymatic microassays for aspartate aminotransferase isoenzymes   总被引:2,自引:0,他引:2  
The properties of the cytosolic and mitochondrial isoenzymes of aspartate aminotransferase were studied using a commercial preparation of the cytosolic isoenzyme, a mitochondrial preparation, and whole brain homogenate. Based on these properties, microassays were developed and shown to be highly specific and quantitatively accurate for measuring the activity of either the cytosolic or mitochondrial isoenzyme in microgram quantities of tissue. The assays have been successfully applied to homogenates of a wide variety of tissues. They can be used to measure the activities of aspartate aminotransferase isoenzymes in sub-microgram samples of freeze-dried tissue.  相似文献   

20.
Arginine-386, the active-site residue of Escherichia coli aspartate aminotransferase (EC 2.6.1.1) that binds the substrate alpha-carboxylate, was replaced with tyrosine and phenylalanine by site-directed mutagenesis. This experiment was undertaken to elucidate the roles of particular enzyme-substrate interactions in triggering the substrate-induced conformational change in the enzyme. The activity and crystal structure of the resulting mutants were examined. The apparent second-order rate constants of both of these mutants are reduced by more than 5 orders of magnitude as compared to that of wild-type enzyme, though R386Y is slightly more active than R386F. The 2.5-A resolution structure of R386F in its native state was determined by using difference Fourier methods. The overall structure is very similar to that of the wild-type enzyme in the open conformation. The position of the Phe-386 side chain, however, appears to shift with respect to that of Arg-386 in the wild-type enzyme and to form new contacts with neighboring residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号