首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in the fetal lung, but during lung development it gradually disappears in cells of future alveolar spaces. Recent studies have implicated the CFTR in fluid transport by the adult alveolar epithelium, but its presence has not been demonstrated directly. This study re-evaluated CFTR expression and activity in the adult pulmonary epithelium by using freshly isolated rat alveolar type II (ATII) cells. CFTR mRNA was detected by semiquantitative polymerase chain reaction on the day of cell isolation but was rapidly reduced by 60% after 24 h of cell culture. This was paralleled by a similar decrease of surfactant protein A expression and alkaline phosphatase staining, markers of the ATII cell phenotype. CFTR expression increased significantly on day 4 in cells grown on filters at the air-liquid interface compared with cells submerged or grown on plastic. Significantly higher CFTR expression was detected in distal lung tissue compared with the trachea. The CFTR was also found at the protein level in Western blot experiments employing lysates of freshly isolated alveolar cells. Whole cell patch-clamp experiments revealed cAMP-stimulated, 5-nitro-2-(3-phenylpropylamino)-benzoate-sensitive Cl(-) conductance with a linear current-voltage relationship. In cell-attached membrane patches with 100 microM amiloride in pipette solution, forskolin stimulated channels of approximately 4 pS conductance. Our results indicate that 50-250 of functional CFTR Cl(-) channels occur in adult alveolar cells and could contribute to alveolar liquid homeostasis.  相似文献   

2.
3.
Arginine 347 in the sixth transmembrane domain of cystic fibrosis transmembrane conductance regulator (CFTR) is a site of four cystic fibrosis-associated mutations. To better understand the function of Arg-347 and to learn how mutations at this site disrupt channel activity, we mutated Arg-347 to Asp, Cys, Glu, His, Leu, or Lys and examined single-channel function. Every Arg-347 mutation examined, except R347K, had a destabilizing effect on the pore, causing the channel to flutter between two conductance states. Chloride flow through the larger conductance state was similar to that of wild-type CFTR, suggesting that the residue at position 347 does not interact directly with permeating anions. We hypothesized that Arg-347 stabilizes the channel through an electrostatic interaction with an anionic residue in another transmembrane domain. To test this, we mutated anionic residues (Asp-924, Asp-993, and Glu-1104) to Arg in the context of either R347E or R347D mutations. Interestingly, the D924R mutation complemented R347D, yielding a channel that behaved like wild-type CFTR. These data suggest that Arg-347 plays an important structural role in CFTR, at least in part by forming a salt bridge with Asp-924; cystic fibrosis-associated mutations disrupt this interaction.  相似文献   

4.
In our search for the mechanism of the enzyme oestrone sulphatase (ES) we have synthesised and evaluated a number of compounds that were predicted to possess some inhibitory activity. Some of these compounds were indeed found to be inhibitors of ES, whilst other compounds were not. From a consideration of the structure–activity relationship (SAR) of the inhibitors and non-inhibitors of this enzyme, we discovered a factor which we now believe is the main inhibitory moiety within the aminosulphonated inhibitors. We therefore report the results of our study into a series of phenyl and alkyl sulphamated compounds as inhibitors of ES. The results of the study show that the substituted phenyl sulphamates are potent inhibitors, whereas the alkyl compounds are, in general, non-inhibitors. Using the results of our SAR study, we postulate the probable mechanism for the irreversible and reversible inhibition of ES, and rationalise the role of the different physicochemical factors in the inhibition of this crucial enzyme.  相似文献   

5.
6.
CYP17 (17alpha-hydroxylase-17,20-lyase; also P450c17 or P450(17alpha)) catalyses the17alpha-hydroxylation of progestogens and the subsequent acyl-carbon cleavage of the 17alpha-hydroxylated products (lyase activity) in the biosynthesis of androgens. The enzyme also catalyses another type of acyl-carbon cleavage (direct cleavage activity) in which the 17alpha-hydroxylation reaction is by-passed. Human CYP17 is heavily dependent on the presence of the membrane form of cytochrome b(5) for both its lyase and direct cleavage activities. In the present study it was found that substitution of human CYP17 amino acids, Arg(347), Arg(358) and Arg(449), with non-cationic residues, yielded variants that were impaired in the two acyl-carbon bond cleavage activities, quantitatively to the same extent and these were reduced to between 3 and 4% of the wild-type protein. When the arginines were replaced by lysines, the sensitivity to cytochrome b(5) was restored and the acyl-carbon cleavage activities were recovered. All of the human mutant CYP17 proteins displayed wild-type hydroxylase activity, in the absence of cytochrome b(5). The results suggest that the bifurcated cationic charges at Arg(347), Arg(358) and Arg(449) make important contributions to the formation of catalytically competent CYP17.cytochrome b(5) complex. The results support our original proposal that the main role of cytochrome b(5) is to promote protein conformational changes which allow the iron-peroxo anion to form a tetrahedral adduct that fragments to produce the acyl-carbon cleavage products.  相似文献   

7.
8.
Previous alanine scanning mutagenesis of ADP-glucose pyrophosphorylase from Anabaena PCC 7120 indicated that Arg(294) plays a role in inhibition by orthophosphate [J. Sheng, J. Preiss, Biochemistry 36 (1997) 13077]. In this study, analysis of several site-directed mutants in the presence of different metabolic effectors showed that the primary inhibitor for two of the mutant proteins, R294A and R294Q, was no longer orthophosphate but rather NADPH, which was a reversal in the pattern of inhibitor selectivity from the wild-type. Despite the differences in charge and size, analysis of the purified R294K, R294E, and R294Q mutant enzymes demonstrated similar decreases in orthophosphate affinity as the R294A mutant, while most of the other kinetic values were similar to those reported for the wild-type. All these results suggest that the positive charge of Arg(294) is not specifically involved in orthophosphate binding and that it is important in determining inhibitor selectivity.  相似文献   

9.
To understand the biochemical events that control the generation of superoxide, the effect of inhibiting the respiratory complexes III and IV (C-III and C-IV) and alternative oxidase (AOX) on the rate of superoxide production was analyzed in mitochondria from maize seedlings. To increase superoxide production, it was required to inhibit C-III or C-IV by at least 30% or 50%, respectively. Below this inhibition threshold, AOX exerted the highest degree of control on superoxide production, whereas above it, the highest degree of control was exerted by C-IV. The contribution of C-III to control superoxide production became significant when AOX activity was modulated.  相似文献   

10.
11.
12.
Epicatechin, a flavonoid belonging to the group of compounds collectively called catechins, have been reported to possess insulin-like properties. Besides their anti-diabetic properties, catechins also show growth inhibition. Since cytosolic pH (pHi) plays a role in cell proliferation and the Na/H exchanger (NHE) is the major pH (pHi) regulatory mechanism, we undertook in vitro studies with human erythrocytes to examine the effect of (-) epicatechin (EC) on the NHE1 isoform. NHE activity was measured in eight healthy volunteers, eight type 1 diabetics, and nine type 2 diabetics, following 30 min incubations at 37 degrees C with either 1 mM epicatechin, 10(-9) M insulin or solvent alone. NHE activity was elevated in both groups of patients (P< 0.05). Epicatechin caused a 93% decrease in Na/H antiport activity in health controls, 89 and 86% in type 1 and type 2 diabetics, respectively (P< 0.001). Insulin caused a 36% decrease in antiport activity only in the type 2 diabetic group (P< 0.05). The strong inhibition of erythrocyte NHE1 (the ubiquitously present isoform) by epicatechin may have important implications. NHE1 inhibition could be one of the major mechanisms underlying the antiproliferative effects of catechins.  相似文献   

13.
Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H(2)O(2) threefold above the endogenous H(2)O(2) production. Real-time measurements of the redox potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 microM) oxidized the cytosol from a resting value of -318+/-5 mV by 48.0+/-4.6 mV within 2 h; a comparable oxidation was induced by 100 microM H(2)O(2). Whereas resting Cl(-) secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl(-) secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). Cystic fibrosis bronchial epithelial cells homozygous for DeltaF508 CFTR failed to secrete Cl(-) in response to pyocyanin or H(2)O(2), indicating that these oxidants specifically target the CFTR and not other Cl(-) conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 h. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H(2)O(2), depletes glutathione and ATP, and impairs CFTR function in Pseudomonas-infected lungs.  相似文献   

14.
The molecular basis of 3-ketothiolase deficiency (3KTD) was examined in a 3KTD family. Immunochemical analyses showed that mitochondrial acetoacetyl-CoA thiolase (T2) biosynthesized in the patient's fibroblasts (GK06) was unstable and that the parents and brother were obligatory carriers of 3KTD. When sequencing the PCR-amplified patient's T2 cDNA, we noted a G to A replacement which caused 347Ala to Thr substitution of the mature T2 subunit. Transfection analysis revealed that this substitution resulted in an instability of the T2 protein. Analyses of the T2 cDNA and gene of the family indicated that the patient was a compound heterozygote; the allele that derived from the mother had a point mutation (347Ala to Thr) and the other allele from the father has a mutation which would abolish the T2 gene expression. This report is apparently the first definition of a mutant allele for 3KTD, at the gene level.  相似文献   

15.
(-)-(4S)-limonene synthase (LS) and (-)-(4S)-limonene/(-)-(1S, 5S)-alpha-pinene synthase (LPS) from grand fir (Abies grandis) exhibit nearly 91% sequence identity (93% similarity) at the amino acid level, yet produce very different mixtures of monoterpene olefins. To elucidate critical amino acids involved in determining monoterpene product distribution, a combination of domain swapping and reciprocal site-directed mutagenesis was carried out between these two enzymes. Exchange of the predicted helix D through F region in LS gave rise to an LPS-like product outcome, whereas reciprocal substitutions of four amino acids in LPS (two in the predicted helix D and two in the predicted helix F) altered the product distribution to that intermediate between LS and LPS, and resulted in a 5-fold increase in relative velocity. These results, in conjunction with modeling of the two enzymes, suggest that amino acids in the predicted D through F helix regions are critical for product determination.  相似文献   

16.
The effects of copper on the activity of erythrocyte (Ca2+ + Mg2+)-ATPase have been tested on membranes stripped of endogenous calmodulin or recombined with purified calmodulin. The interactions of copper with Ca2+, calmodulin and (Mg-ATP)2- were determined by kinetic studies. The most striking result is the potent competitive inhibition exerted by (Cu-ATP)2- against (Mg-ATP)2- (Ki = 2.8 microM), while free copper gives no characteristic inhibition. Our results also demonstrate that copper does not compete with calcium either on the enzyme or on calmodulin. The fixation of calmodulin on the enzyme is not altered in the presence of copper as shown by the fact that the dissociation constant remains unaffected. It may be speculated that (Cu-ATP)2- is the active form of copper, which could plausibly be at the origin of some of the pathological features of erythrocytes observed in conditions associated with excess copper.  相似文献   

17.
In Escherichia coli, nitrosative mutagenesis may occur during nitrate or nitrite respiration. The endogenous nitrosating agent N2O3 (dinitrogen trioxide, nitrous anhydride) may be formed either by the condensation of nitrous acid or by the autooxidation of nitric oxide, both of which are metabolic by-products. The purpose of this study was to determine which of these two agents is more responsible for endogenous nitrosative mutagenesis. An nfi (endonuclease V) mutant was grown anaerobically with nitrate or nitrite, conditions under which it has a high frequency of A:T-to-G:C transition mutations because of a defect in the repair of hypoxanthine (nitrosatively deaminated adenine) in DNA. These mutations could be greatly reduced by two means: (i) introduction of an nirB mutation, which affects the inducible cytoplasmic nitrite reductase, the major source of nitric oxide during nitrate or nitrite metabolism, or (ii) flushing the anaerobic culture with argon (which should purge it of nitric oxide) before it was exposed to air. The results suggest that nitrosative mutagenesis occurs during a shift from nitrate/nitrite-dependent respiration under hypoxic conditions to aerobic respiration, when accumulated nitric oxide reacts with oxygen to form endogenous nitrosating agents such as N2O3. In contrast, mutagenesis of nongrowing cells by nitrous acid was unaffected by an nirB mutation, suggesting that this mutagenesis is mediated by N2O3 that is formed directly by the condensation of nitrous acid.  相似文献   

18.
We have investigated the role of dihydrofolate (H2PteGlu) accumulation in the inhibition of de novo purine synthesis by methotrexate (MTX) in human MCF-7 breast cancer cells. Previous studies have shown that cytotoxic concentrations of MTX that inhibit dihydrofolate reductase produce only minimal depletion of the reduced folate cofactor, 10-formyltetrahydrofolate, required for purine synthesis. At the same time, de novo purine synthesis is totally inhibited. In these studies, we show that 10 microM MTX causes inhibition of purine synthesis at the step of phosphoribosylaminoimidazolecarboxamide (AICAR) transformylase, as reflected in a 2-3-fold expansion of the intracellular AICAR pool. The inhibition of purine synthesis coincides with the rapid intracellular accumulation of H2PteGlu, a known inhibitor of AICAR transformylase. When the generation of H2PteGlu is blocked by pretreatment with 50 microM 5-fluorodeoxyuridine (FdUrd), an inhibitor of thymidylate synthase, MTX no longer causes inhibition of purine synthesis. Intermediate levels of H2PteGlu produced in the presence of lower (0.1-10 microM) concentrations of FdUrd led to proportional inhibition of purine biosynthesis, and the exogenous addition of H2PteGlu to breast cells in culture re-established the block in purine synthesis in the presence of FdUrd and MTX. The early phases of inhibition of purine biosynthesis could be ascribed only to H2PteGlu accumulation. MTX polyglutamates, also known to inhibit AICAR transformylase, were present in breast cells only after 6 h of incubation with the parent compounds and were not formed in cells preincubated with FdUrd. The lipid-soluble antifolate trimetrexate, which does not form polyglutamates, produced modest 10-formyltetrahydrofolate depletion, but caused marked H2PteGlu accumulation and a parallel inhibition of purine biosynthesis. This evidence leads to the conclusion that MTX and the lipid-soluble analog trimetrexate cause inhibition of purine biosynthesis through the accumulation of H2PteGlu behind the blocked dihydrofolate reductase reaction.  相似文献   

19.
Abstract: Coccocypselum is a small neotropical genus of creeping herbs belonging to the Rubiaceae (Rubioideae). A recent macromolecular study suggested a previously unknown relationship between Coccocypselum and two other neotropical genera, Declieuxia and Hindsia, but the morphological evidence for this relationship was obscure. In the present paper, morphological characters supporting the conclusions from macromolecular data are presented. The most important similarities between Coccocypselum, Declieuxia, and Hindsia are found in their pollen and stipule morphology. Pollen of the three genera share a typical exine ornamentation, called a complex reticulum, which consists of a psilate suprareticulum and spinulate infrareticulum. In some specimens of Hindsia longiflora, a transitional stage between a complex reticulum and a simple, spinulate reticulum is encountered. The interpetiolar stipules of Hindsia, Declieuxia and Coccocypselum have an identical basic structure: they bear a central, colleter-tipped awn that extends downwards to the next node as a distinct stem ridge. Some less conspicuous similarities of habit, calyx, and corolla are also discussed. The morphological data are, in part, confirmed by distributional data, Declieuxia and Hindsia having a remarkably congruent centre of diversity in the southeast of Brazil. It is concluded that the macromolecular data, combined with this new morphological and distributional evidence, justify an extended tribe Coccocypseleae, comprising the genera Coccocypselum, Hindsia, and Declieuxia.  相似文献   

20.
TILLING (Targeting Induced Local Lesions in Genomes) by Sequencing (TbyS) refers to the application of high-throughput sequencing technologies to mutagenised TILLING populations as a tool for functional genomics. TbyS can be used to identify and characterise induced variation in genes (controlling traits of interest) within large mutant populations, and is a powerful approach for the study and harnessing of genetic variation in crop breeding programmes. The extension of existing TILLING platforms by TbyS will accelerate crop functional genomics studies, in concert with the rapid increase in genome editing capabilities and the number and quality of sequenced crop plant genomes. In this mini-review, we provide an overview of the growth of TbyS and its potential applications to crop molecular breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号