首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C F Arias  T Ballado  M Pleba?ski 《Gene》1986,47(2-3):211-219
The major outer layer protein, VP7, of the simian rotavirus SA11 has been synthesized in Escherichia coli, under the control of the lac promoter, as a fusion polypeptide with beta-galactosidase (beta Gal). The viral protein in the hybrid polypeptide is missing its N-terminal hydrophobic region and 26 amino acids (aa) at its C-terminus; it is flanked at both ends by beta Gal sequences. We have purified the hybrid 145-kDa protein by affinity chromatography using a column specific for beta Gal. Unexpectedly, a second protein of 118-kDa was also specifically bound to the column. N-terminal aa sequence analysis of these two proteins showed that the 145-kDa protein represented the expected fusion product, whereas the 118-kDa protein was apparently the result of initiation of translation at an internal site close to the 3' end of the viral sequence, in the chimeric mRNA. Each of the two polypeptides represented about 2 to 3% of the total protein of the recombinant-plasmid-carrying bacteria. When a bacterial lysate enriched for the hybrid polypeptides was injected into mice, it induced neutralizing antibodies to SA11 rotavirus.  相似文献   

2.
C F Arias  G Garcia    S Lopez 《Journal of virology》1989,63(12):5393-5398
In the rotavirus SA11 surface protein VP4, the trypsin cleavage sites associated with the enhancement of infectivity are flanked by two amino acid regions that are highly conserved among different rotaviruses. We have tested the ability of synthetic peptides that mimic these two regions to induce and prime for a rotavirus neutralizing antibody response in mice. After the peptide immunization schedule, both peptides induced peptide antibodies, but neither was able to induce virus antibodies, as measured by an enzyme-linked immunosorbent assay or a neutralization assay. However, when the peptide-inoculated mice were subsequently injected with intact SA11 virus, a rapid and high neutralizing antibody response was observed in mice that had previously received the peptide comprising amino acids 220 to 233 of the VP4 protein. This neutralizing activity was serotype specific; however, this peptide was also able to efficiently prime the immune system of mice for a neutralizing antibody response to the heterotypic rotavirus ST3 when the ST3 virus was used for the secondary inoculation.  相似文献   

3.
We used 18 monoclonal antibodies against B19 parvovirus to identify neutralizing epitopes on the viral capsid. Of the 18 antibodies, 9 had in vitro neutralizing activity in a bone marrow colony culture assay. The overlapping polypeptide fragments spanning the B19 structural proteins were produced in a pMAL-c Escherichia coli expression system and used to investigate the binding sites of the neutralizing antibodies. One of the nine neutralizing antibodies reacted with both VP1 and VP2 capsid proteins and a single polypeptide fragment on an immunoblot, identifying a linear neutralizing epitope between amino acids 57 and 77 of the VP2 capsid protein. Eight of nine neutralizing antibodies failed to react with either of the capsid proteins or any polypeptide fragments, despite reactivities with intact virions in a radioimmunoassay, suggesting that additional conformationally dependent neutralizing epitopes exist.  相似文献   

4.
为了获得既可预防猪细小病毒感染又能促进生长的嵌合病毒样颗粒疫苗,以PPV NJ-a株基因组DNA为模板扩增VP2基因片段,在VP2基因N端融合人工合成的4拷贝生长抑素基因,构建杆状病毒转移载体pFast-SS4-VP2。通过转化DH10Bac感受态细胞,pFast-SS4-VP2与穿梭载体Bacmid重组,获得重组Bacmid,命名为rBacmid-SS4-VP2。rBacmid-SS4-VP2转染Sf-9细胞,获得重组病毒rBac-SS4-VP2。SDS-PAGE与Western blotting鉴定可见约68 kDa的rSS4-VP2条带;rBac-SS4-VP2感染细胞IFA检测产生很强的特异性绿色荧光;感染细胞超薄切片电镜观察到大量特征性病毒样颗粒。将重组蛋白分别辅以铝胶、IMS和白油不同佐剂免疫小鼠,通过检测免疫小鼠VP2特异性ELISA抗体、PPV特异性中和抗体、生长抑素的抗体水平及生长激素水平来评价嵌合病毒样颗粒的免疫原性。结果表明,辅以铝胶与IMS佐剂重组蛋白组均产生了与PPV全毒组相似的ELISA抗体与中和抗体反应;重组蛋白免疫组均产生较好的针对生长抑素的抗体反应;免疫小鼠体内生长激素的水平明显升高;其中以铝胶佐剂组产生的各抗体水平最高,白油佐剂组各抗体水平最低。为以后生产安全、有效的颗粒化亚单位疫苗提供了一个新的设计思路,又为应用病毒样颗粒递呈外源肽,从而生产多联亚单位疫苗奠定了基础。  相似文献   

5.
Trypsin activation pathway of rotavirus infectivity.   总被引:5,自引:3,他引:2       下载免费PDF全文
C F Arias  P Romero  V Alvarez    S Lpez 《Journal of virology》1996,70(9):5832-5839
The infectivity of rotaviruses is increased by and most probably is dependent on trypsin treatment of the virus. This proteolytic treatment specifically cleaves VP4, the protein that forms the spikes on the surface of the virions, to polypeptides VP5 and VP8. This cleavage has been reported to occur in rotavirus SA114fM at two conserved, closely spaced arginine residues located at VP4 amino acids 241 and 247. In this work, we have characterized the VP4 cleavage products of rotavirus SA114S generated by in vitro treatment of the virus with increasing concentrations of trypsin and with proteases AspN and alpha-chymotrypsin. The VP8 and VP5 polypeptides were analyzed by gel electrophoresis and by Western blotting (immunoblotting) with antibodies raised to synthetic peptides that mimic the terminal regions of VP4 generated by the trypsin cleavage. It was shown that in addition to arginine residues 241 and 247, VP4 is cleaved at arginine residue 231. These three sites were found to have different susceptibilities to trypsin, Arg-241 > Arg-231 > Arg-247, with the enhancement of infectivity correlating with cleavage at Arg-247 rather than at Arg-231 or Arg-241. Proteases AspN and alpha-chymotrypsin cleaved VP4 at Asp-242 and Tyr-246, respectively, with no significant enhancement of infectivity, although this enhancement could be achieved by further treatment of the virus with trypsin. The VP4 end products of trypsin treatment were a homogeneous VP8 polypeptide comprising VP4 amino acids 1 to 231 and a heterogeneous VP5, which is formed by two polypeptide species (present at a ratio of approximately 1:5) as a result of cleavage at either Arg-241 or Arg-247. A pathway for the trypsin activation of rotavirus infectivity is proposed.  相似文献   

6.
细小病毒B19壳抗原VP2在大肠杆菌中的表达及血清学检测   总被引:2,自引:2,他引:0  
为了进行B19感染临床的血清学诊断,利用原核表达载体PQE31克隆和表达B19壳蛋白VP2,酶切鉴定PCR产物及PQE31-VP2克隆的正确性,Western-blot证明表达蛋白的特异性,并对其表达条件和纯化条件进行了优选。在D600为0.7,诱导时间为5h时表达量最高。Ni2+亲和色谱,用0.5mol/L咪唑洗脱液洗脱,获得纯化蛋白。利用纯化蛋白检测100份人群血清,免疫斑点法结果为阳性94例,阴性6例;ELISA结果为阳性84例,阴性16例,两种方法结果一致(0.25>P>0.1)。  相似文献   

7.
Bluetongue virus (BTV) belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/-)) mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+) T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.  相似文献   

8.
[目的]探索犬细胞毒性T细胞相关抗原-4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)胞外区作为免疫佐剂的可行性.[方法]根据已发表序列设计引物,用RT-PCR扩增CTLA-4胞外区编码序列,用PCR扩增犬细小病毒(canine parvovirus,CPV)VP2蛋白主要抗原表位基因片段VP2S,将VP2S克隆入含和不含CTLA-4胞外区基因片段的原核表达质粒pQE-31;用获得的重组质粒pQE-CTLA-4-VP2S和pQE-VP2S转化大肠杆菌,并进行诱导表达;用相同剂量的重组蛋白VP2S和CTLA-4-VP2S免疫小鼠.用间接ELISA和血凝抑制试验比较两个免疫组的抗体水平.[结果]经过30次循环PCR扩增后,琼脂糖凝胶电泳显示预期大小的扩增产物;序列测定结果显示,克隆的毕格犬CTLA-4胞外区与已发表序列的核苷酸同源性为99.2%,氨基酸序列同源性为98.4%,结合B7分子的六肽基序(MYPPPY)无变化:VP2S与已发表CPV VP2的核苷酸序列同源性为99%,氨基酸序列同源性为98.6%:经IPTG诱导后,两种重组大肠杆菌表达预期的29kDa VP2S和42kDaCTLA-4-VP2S重组蛋白,两者均能被CPV抗血清识别;间接ELISA和血凝抑制试验结果显示,CTLA-4-VP2S免疫组的抗体产生时间为初免后第2周,抗体高峰期为初免后第4周,而VP2S免疫组的抗体产生时间为初免后第4周,抗体高峰期为初免后第5周,两个试验组高峰期ELISA抗体效价和血凝抑制抗体效价分别相差100倍和10倍.[结论]犬CTLA-4胞外区可作为分子佐剂促进CPV VP2蛋白抗体的产生.  相似文献   

9.
Using nuclease Bal31, deletions were generated within the poliovirus type 1 cDNA sequences, coding for capsid polypeptide VP1, within plasmid pCW119. The fusion proteins expressed in Escherichia coli by the deleted plasmids reacted with rabbit immune sera directed against poliovirus capsid polypeptide VP1 (alpha VP1 antibodies). They also reacted with a poliovirus type 1 neutralizing monoclonal antibody C3, but reactivity was lost when the deletion extended up to VP1 amino acids 90-104. Computer analysis of the protein revealed a high local density of hydrophilic amino acid residues in the region of VP1 amino acids 93-103. A peptide representing the sequence of this region was chemically synthesized. Once coupled to keyhole limpet hemocyanin, this peptide was specifically immunoprecipitated by C3 antibodies. The peptide also inhibited the neutralization of poliovirus type 1 by C3 antibodies. We thus conclude that the neutralization epitope recognized by C3 is located within the region of amino acids 93-104 of capsid polypeptide VP1.  相似文献   

10.
The VP7 and VP4 genes of seven antigenic mutants of simian rotavirus SA11 4fM (serotype 3) selected after 39 passages in the presence of SA11 4fM hyperimmune antiserum, were sequenced. Nucleotide sequence analysis indicated the following. (i) Twice as many amino acid substitutions occurred in the VP7 protein than in VP4, which has a molecular weight twice that of VP7. (ii) Most amino acid changes that occurred clustered in six variable regions of VP7 and in two variable regions of VP4; these variable regions may represent immunodominant epitopes. (iii) Most amino acid substitutions that occurred in VP7 and VP4 of these mutants were also observed in antigenic mutants selected with neutralizing monoclonal antibodies (NMAbs); however, some amino acid substitutions occurred that were not selected for NMAbs. (iv) On VP7, some of the neutralization epitopes appeared to be interrelated because amino acid substitution in one site affected binding of specific NMAbs to other sites, while other neutralization epitopes on VP7 appeared to be independent, in that amino acid substitution in one site did not affect the binding of NMAbs to another distant site.  相似文献   

11.
C Wychowski  D Benichou    M Girard 《Journal of virology》1987,61(12):3862-3869
A cDNA fragment coding for poliovirus capsid polypeptide VP1 was inserted into a simian virus 40 (SV40) genome in the place of the SV40 VP1 gene and fused in phase to the 3' end of the VP2-VP3 genes. Simian cells were infected with the resulting hybrid virus in the presence of an early SV40 mutant used as a helper. Indirect immunofluorescence analysis of the infected cells using anti-poliovirus VP1 immune serum revealed that the SV40/poliovirus fusion protein was located inside the cell nucleus. Deletions of various lengths were generated in the SV40 VP2-VP3 portion of the hybrid gene using BAL31 nuclease. The resulting virus genomes expressed spliced fusion proteins whose intracellular location was either intranuclear or intracytoplasmic, depending on the presence or absence of VP2 amino acid residues 317 to 323 (Pro-Asn-Lys-Lys-Lys-Arg-Lys). This was confirmed by site-directed mutagenesis of the Lys residue at position 320. Modification of Lys-320 into either Thr or Asn abolished the nuclear accumulation of the fusion protein. It is concluded that at least part of the sequence of VP2 amino acids 317 to 323 allows VP2 and VP3 to remain stably located inside the cell nucleus. The proteins are most probably transported from the cell cytoplasm to the cell nucleus by interaction, with VP1 acting as a carrier.  相似文献   

12.
Antisera to the sodium dodecyl sulfate (SDS)-polyacrylamide gel-derived polyoma virion polypeptides were used in immunoprecipitation experiments with ethylene glycol-bis-N,N'-tetraacetic acid (EGTA)-dissociated polyoma virions and capsids to determine the specificity of the antipolyoma polypeptide sera. Additionally, a technique for applying 125I-labeled immunoglobulins to SDS-polyacrylamide gels was used to explore the antigenic specificities of the antisera. The results demonstrated that antisera directed against the SDS-gel-derived VP1, VP2, and VP3 did not react with native polyoma proteins, but would react with the appropriate antigens on denatured polyoma proteins. Antisera against the histone region of such gels reacted with native and denatured polyoma VP1. Separation of neutralizing antibodies from hemagglutination inhibition (HAI) antibodies to polyoma in antisera directed against the histone region of polyacrylamide gels was done by using a polyoma capsid affinity column. The antibodies eluted from this column which did not react with capsids possessed only neutralizing activity, whereas antibodies which bound to capsids possessed only HAI activity. These isolated immunoglobulin G fractions were then used in immunoprecipitation experiments to demonstrate that the antigenic determinants responsible for the HAI activity of the serum were contained on a 16,000-dalton polypeptide, whereas those antigenic determinants responsible for neutralizing activity were contained on a 14,000-dalton polypeptide. Both of these polypeptides present in the histone region of the SDS-gels appeared to be derived from the major virion protein VP1.  相似文献   

13.
The cDNA fragment of the large RNA segment of infectious bursal disease virus 002-73, when expressed in Escherichia coli, produces precursor polyprotein (N-VP2-VP4-VP3-C), most of which is then processed to generate constituent polypeptides. Using cDNA fragments containing site-specific mutations and two monoclonal antibodies that are specific to VP2 and VP3 of mature virus particles, we demonstrated that the VP4 protein is involved in processing of the precursor polyprotein to generate VP2 and VP3 and excluded the possibility of internal initiation for the generation of VP3.  相似文献   

14.
P Isa  S Lpez  L Segovia    C F Arias 《Journal of virology》1997,71(9):6749-6756
The infectivity of most animal rotaviruses is dependent on the interaction of the virus spike protein VP4 with a sialic acid (SA)-containing cell receptor, and the SA-binding domain of this protein has been mapped between amino acids 93 and 208 of its trypsin cleavage fragment VP8. To identify which residues in this region are essential for the SA-binding activity, we performed alanine mutagenesis of the rotavirus RRV VP8 expressed in bacteria as a fusion polypeptide with glutathione S-transferase. Tyrosines were primarily targeted since tyrosine has been involved in the interaction of other viral hemagglutinins with SA. Of the 15 substitutions carried out, 10 abolished the SA-dependent hemagglutination activity of the protein, as well as its ability to bind to glycophorin A in a solid-phase assay. However, only alanine substitutions for tyrosines 155 and 188 and for serine 190 did not affect the overall conformation of the protein, as judged by their interaction with a panel of conformationally sensitive neutralizing VP8 monoclonal antibodies (MAbs). These findings suggest that these three amino acids play an essential role in the SA-binding activity of the protein, presumably by interacting directly with the SA molecule. The predicted secondary structure of VP8 suggests that it is organized as 11 beta-strands separated by loops; in this model, Tyr-155 maps to loop 7 while Tyr-188 and Ser-190 map to loop 9. The close proximity of these two loops is also supported by previous results from competition experiments with neutralizing MAbs directed at RRV VP8.  相似文献   

15.
The VP8 subunit protein of human rotavirus (HRV) plays an important role in viral infectivity and neutralization. Recombinant peptide antigens displaying the amino acid sequence M(1)ASLIYRQLL(10), a linear neutralization epitope on the VP8 protein, were constructed and examined for their ability to generate anti-peptide antibodies and HRV-neutralizing antibodies in BALB/c mice. Peptide antigen constructs were expressed in E. coli as fusion proteins with thioredoxin and a universal tetanus toxin T-cell epitope (P2), in order to enhance the anti-peptide immune response. The peptide antigen containing three tandem copies of the VP8 epitope induced significantly higher levels of anti-peptide antibody than only a single copy of the epitope, or the peptide co-administered with the carrier protein and T-cell epitope. Furthermore, the peptide antigen containing three copies of the peptide produced significantly higher virus-neutralization titres, higher than VP8, indicating that a peptide antigen displaying repeating copies of the amino acid region 1-10 of VP8 is a more potent inducer of HRV-neutralizing antibodies than VP8 alone, and may be useful for the production of specific neutralizing antibodies for passive immunotherapy of HRV infection.  相似文献   

16.
C Wychowski  S van der Werf  M Girard 《Gene》1985,37(1-3):63-71
The poliovirus cDNA fragment coding for capsid polypeptide VP1 was inserted between the EcoRI and BamHI sites of SV40 DNA, generating a chimaeric gene in which the sequence of the 302 amino acids (aa) of poliovirus capsid polypeptide VP1 was placed downstream from that of the 94 N-terminal aa of SV40 capsid polypeptide VP1. The resulting defective, hybrid virus, SV40-delta 1 polio, was propagated in CV1 cells using an early SV40 mutant, am404, as a helper. Cells doubly infected by SV40-delta 1 polio and am404 expressed a 50-kDal fusion protein which was specifically immunoprecipitated by polyclonal and/or monoclonal antibodies raised against poliovirus capsids or against poliovirus polypeptide VP1. Examination of the infected cells by immunofluorescence after staining with anti-poliovirus VP1 immune sera revealed that the fusion protein was mostly located in the intra- and perinuclear space of the cells, in contrast to the exclusively intracytoplasmic location of genuine poliovirus VP1 polypeptide that was observed in poliovirus-infected cells. This suggests that the N-terminal part of the SV40-VP1 polypeptide could contain an important sequence element acting as a migration signal for the transport of proteins from the cytoplasm to the nucleus.  相似文献   

17.
18.
BACKGROUND: The herpes simplex virus type 1 (HSV-1) VP22 protein has the property to mediate intercellular trafficking of heterologous proteins fused to its C- or N-terminus. We have previously shown improved delivery and enhanced therapeutic effect in vitro and in vivo with a P27-VP22 fusion protein. In this report, we were interested in studying the spread and biological activity of VP22 fused to the P53 tumor suppressor. METHODS: Expression of the VP22-P53 and P53-VP22 fusion proteins was shown by Western blot and intercellular spreading was monitored by immunofluorescence on transiently transfected cells. In vitro antiproliferative activity of wild-type (wt) P53 and P53-VP22 was assessed by proliferation assays and transactivating ability was studied by a reporter gene test and a gel-shift assay. Antitumor activity was also tested in vivo by intratumoral injections of naked DNA in a model of subcutaneous tumors implanted in nude mice. RESULTS: Our results show that the C-terminal fusion or the N-terminal P53-VP22 fusion proteins are not able to spread as efficiently as VP22. Moreover, we demonstrate that VP22-P53 does not possess any transactivating ability. P53-VP22 has an antiproliferative activity, but this activity is not superior to the one of P53 alone, in vitro or in vivo. CONCLUSIONS: Our study indicates that a gene transfer strategy using VP22 cannot be considered as a universal system to improve the delivery of any protein.  相似文献   

19.
Infectious bursal disease virus (IBDV) is a nonenveloped avian virus with a two-segment double-stranded RNA genome. Its T=13 icosahedral capsid is most probably assembled with 780 subunits of VP2 and 600 copies of VP3 and has a diameter of about 60 nm. VP1, the RNA-dependent RNA polymerase, resides inside the viral particle. Using a baculovirus expression system, we first observed that expression of the pVP2-VP4-VP3 polyprotein encoded by the genomic segment IBDA results mainly in the formation of tubules with a diameter of about 50 nm and composed of pVP2, the precursor of VP2. Very few virus-like particles (VLPs) and VP4 tubules with a diameter of about 25 nm were also identified. The inefficiency of VLP assembly was further investigated by expression of additional IBDA-derived constructs. Expression of pVP2 without any other polyprotein components results in the formation of isometric particles with a diameter of about 30 nm. VLPs were observed mainly when a large exogeneous polypeptide sequence (the green fluorescent protein sequence) was fused to the VP3 C-terminal domain. Large numbers of VLPs were visualized by electron microscopy, and single particles were shown to be fluorescent by standard and confocal microscopy analysis. Moreover, the final maturation process converting pVP2 into the VP2 mature form was observed on generated VLPs. We therefore conclude that the correct scaffolding of the VP3 can be artificially induced to promote the formation of VLPs and that the final processing of pVP2 to VP2 is controlled by this particular assembly. To our knowledge, this is the first report of the engineering of a morphogenesis switch to control a particular type of capsid protein assembly.  相似文献   

20.
A system for the expression and purification of soluble VP8*, part of the human rotavirus (HRV) spike protein, was established by expressing VP8* as a fusion protein with glutathione S-transferase (GST). VP8 cDNA, from the Wa strain of HRV, was prepared by RT-PCR, cloned into a pUC18 plasmid, and inserted into a pGEX-4T-2 GST fusion vector. The GST-VP8* fusion protein was expressed in Escherichia coli, and the VP8* was purified by Glutathione Sepharose 4B affinity chromatography, yielding 1.8 mg VP8*/L culture. The purified VP8* was used to vaccinate chickens, eliciting antibodies which displayed high neutralization activity against the Wa strain of HRV, suggesting its use for the induction of specific neutralizing antibodies for potential immunotherapeutic applications for the prevention of HRV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号