首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aim of this study was to investigate whether the presence of pigment affects the sensitivity of pigmented cells of the eye, retinal pigment epithelium (RPE) and choroidal melanocytes (CMs) to the cytotoxic effects of xenobiotic drugs. Two approaches were used to compare pigmented versus unpigmented cells: RPE cells were repigmented by phagocytosis of synthetic melanin; UVB irradiation was used to induce an increase in pigment in both RPE and CMs. Three drugs known to induce toxicity in the eye, tamoxifen, chloroquine and thioridazine, were used to assess the sensitivity of cells to xenobiotic drugs. RPE cells were more resistant than CMs to the cytotoxic effects of all three drugs by a factor of 5-fold for tamoxifen, 7-fold for thioridazine and 30-fold for chloroquine. When RPE cells were repigmented using synthetic melanin, their sensitivity to tamoxifen was unchanged, they showed a slightly improved response to thioridazine (after 3 days of incubation with this drug), but they showed greatly increased toxicity to chloroquine (after 1 and 3 days of exposure to the drug), suggesting accumulation of this latter drug on the synthetic melanin. UVB irradiation was used to achieve an increase in the pigment content of both RPE and CMs. CMs were much more sensitive to UVB than RPE cells. CMs appeared to synthesise pigment via DOPA oxidase activity; RPE cells showed an increase in fluorescent material independent of any detectable DOPA oxidase activity. Irrespective of the nature of the pigment that UVB induced in melanocytes and RPE cells, their subsequent response to thioridazine and chloroquine was unchanged by the presence of this pigment.  相似文献   

3.
Oxidative damage to retinal pigmented epithelial (RPE) cells and photoreceptors has been implicated in the pathogenesis of age-related macular degeneration (AMD). In order to develop new treatments, it is necessary to characterize the antioxidant defense system in RPE cells to better define their vulnerabilities and how they can be remedied. In this study, we sought to investigate the effects of three different types of oxidative stress on cultured RPE cells. Carbonyl content in RPE cells increased with increasing concentrations of oxidants or increasing duration of exposure with high reproducibility, validating ELISA for carbonyl content as a valuable quantitative measure of oxidative damage. Compared to other cell types, RPE cells were able to survive exposure to H2O2 quite well and exposure to paraquat extremely well. Comparison of the total amount of oxidative damage at the IC50 for each type of stress showed a rank order of hyperoxia > paraquat > H2O2, and since these stressors primarily target different cellular compartments, it suggests that the endogenous defense system against oxidative damage in RPE cells protects well against damage to mitochondria and endoplasmic reticulum, and is less able to handle oxidative damage at the cell surface. Supplementation of media with ascorbic acid provided significant protection from H2O2-induced oxidative damage, but not that induced by paraquat or hyperoxia. Supplementation with docosahexaenoic acid or alpha-tocopherol significantly reduced oxidative damage from H2O2 or hyperoxia, but not that induced by paraquat. We conclude that exposure to different types of oxidative stress results in different patterns of accrual of oxidative damage to proteins in RPE cells, different patterns of loss of viability, and is differentially countered by antioxidants. This study suggests that multiple types of oxidant stress should be used to probe the vulnerabilities of the retina and RPE in vivo, and that ELISA for carbonyl content provides a valuable tool for quantitative assessment of oxidative damage for such studies.  相似文献   

4.
Although photodegradation of the retinal pigment epithelium (RPE) melanin may contribute to the etiology of age‐related macular degeneration, the molecular mechanisms of this phenomenon and the structural changes of the modified melanin remain unknown. Recently, we found that the ratio of pyrrole‐2,3,4,5‐tetracarboxylic acid (PTeCA) to pyrrole‐2,3,5‐tricarboxylic acid (PTCA) is a marker for the heat‐induced cross‐linking of eumelanin. In this study, we examined UVA‐induced changes in synthetic eumelanins to confirm the usefulness of the PTeCA/PTCA ratio as an indicator of photo‐oxidation and compared changes in various melanin markers and their ratios in human melanocytes exposed to UVA, in isolated bovine RPE melanosomes exposed to strong blue light and in human RPE cells from donors of various ages. The results indicate that the PTeCA/PTCA ratio is a sensitive marker for the oxidation of eumelanin exposed to UVA or blue light and that eumelanin and pheomelanin in human RPE cells undergo extensive structural modifications due to the life‐long exposure to blue light.  相似文献   

5.
High oxygen tension, exposure to light, and the biochemical events of vision generate significant oxidative stress in the retina and the retinal pigment epithelium (RPE). Understanding the mechanisms and basis of susceptibility to progressive retinal diseases involving oxidative damage such as age-related macular degeneration (AMD) remains a major challenge. Here microsomal glutathione S-transferase (MGST1) is shown to be a dominant, highly expressed enzyme in bovine and mouse RPE microsomes that displays significant reduction activity toward synthetic peroxides, oxidized RPE lipids, and oxidized retinoids. This enzymatic reduction activity (GPx) can be partially neutralized with a monoclonal anti-MGST1 antibody developed in this study. MGST1-transfected HEK293 cells exhibited greater viability (70 +/- 4% survival) compared with untransfected control cells (46 +/- 4% survival) when challenged with 20 microM H(2)O(2), and greater viability of MGST1-transfected cells following challenge with oxidized docosahexaenoic acid was also observed. Cultured ARPE19 cells transfected with silencing MGST1 siRNAs exhibited lower expression of MGST1 (12% and 26% of the controls) and significantly lower GPx activity (44 +/- 13%) and, thus, were more susceptible to oxidative damage. Immunoblotting revealed that the in vivo expression of MGST1 in mouse RPE decreases 3-4-fold with age, to trace levels in 18-month-old mice. GPx activity in the RPE was also found to be reduced in 12-month-old mice to approximately 67%. These results support an important protective function for MGST1 against oxidative insult in the RPE that decreases with age and suggest that this enzyme may play a role in the development of age-related diseases such as AMD.  相似文献   

6.
Degeneration of the human retinal pigmented epithelium (hRPE) is involved in several eye disorders such as age-related macular degeneration (AMD). In this study, we investigated the protective effect of IGF-1 on human primary cultured RPE cells and its underlying mechanism. IGF-1 dose- and time-dependently promoted the survival of RPE cells from serum deprivation. Western blot showed that IGF-1 stimulated the activation of the PI3K/Akt and MAPK pathways in hRPE. Inhibition of the PI3K/Akt pathway by the PI3K-specific inhibitor, LY294002 or inhibition of Akt by Akt-specific inhibitors Akt inhibitor VIII or SN-38, or downregulation Akt with siRNA specific for Akt blocked the effect of IGF-1 on hRPE. In contrast, blockade of the MAPK pathway with a specific inhibitor PD98059 had no effect. Interestingly, vitreous IGF-1 injection reversed the inhibitory effect of light exposure (a dry AMD model) on both a wave and b wave. Immunocytochemistry showed that vitreous IGF-1 injections promoted the survival of RPE cells in rat retina and the expression of RPE65 in RPE cells from light injury. These results indicate that IGF-1 is able to protect hRPE cell from different insults in vivo and in vitro. Further detailed studies may lead the way to a therapeutic intervention for retinal diseases in which cell death is an underlying contributory mechanism.  相似文献   

7.
Low ocular pigmentation and high long-term exposure to bright light are believed to increase the risk of developing age-related macular degeneration (ARMD). To investigate the role of pigmentation during bright light exposure, cell damage in retinae and choroids of pigmented and non-pigmented rats were compared. Pigmented Long Evans (LE) rats and non-pigmented (albino) Wistar rats were exposed to high intensity visible light from a cold light source with 140,000 lux for 30 min. Control animals of both strains were not irradiated. The animals had their pupils dilated to prevent light absorbance by iris pigmentation. 22 h after irradiation, the rats were sacrificed and their eyes enucleated. Posterior segments, containing retina and choroid, were prepared for light and electron microscopy. Twenty different sections of specified and equal areas were examined in every eye. In albino rats severe retinal damage was observed after light exposure, rod outer segments (ROS) were shortened and the thickness of the outer nuclear layer (ONL) was significantly diminished. Choriocapillaris blood vessels were obstructed. In wide areas the retinal pigment epithelium (RPE) was absent in albino rats after irradiation. In contrast, LE rats presented much less cell damage in the RPE and retina after bright light exposure, although intra-individual differences were observed. The thickness of the ONL was almost unchanged compared to controls. ROS were shortened in LE rats, but the effect was considerably less than that seen in the albinos. Only minimal changes were found in choroidal blood vessels of pigmented rats. The RPE showed certain toxic damage, but cells were not destroyed as in the non-pigmented animals. The number of melanin granules in the RPE of LE rats was reduced after irradiation. Ocular melanin protects the retina and choroid of pigmented eyes against light-induced cell toxicity. Physical protection of iris melanin, as possible in eyes with non-dilated pupils, does not seem to play a major role in our setup. Biochemical mechanisms, like reducing oxidative intracellular stress, are more likely to be responsible for melanin-related light protection in eyes with dilated lens aperture.  相似文献   

8.
In age-related macular degeneration (AMD), retinal pigmented epithelium (RPE) cells are believed to be detrimentally affected. It is thought that zinc may play a part in this process. In the past, therefore, zinc supplementation has been suggested as a treatment for AMD. Experimental data shown here confound this view by indicating that whereas low amounts of zinc do protect RPE cells in culture from stress-induced effects, greater amounts of zinc have the opposite influence. These effects are partly dependent upon the health status of the cells. Experimental data presented herein also show that zinc-induced death of RPE cells can, however, be attenuated by compounds such as antioxidants (-tocopherol, trolox, and metipranolol), or cellular energy substrates (pyruvate and oxaloacetate). It is therefore concluded that a combination of zinc and antioxidants or energy substrates rather that zinc alone should provide a safer and more effective way to treat a disease such as AMD.  相似文献   

9.
Age-related macular degeneration (AMD) leads to dysfunction and degeneration of retinal photoreceptor cells. This disease is characterized, in part, by the development of extracellular deposits called drusen. The presence of drusen is correlated with the development of AMD, although little is known about drusen composition or biogenesis. Drusen form within Bruch's membrane, a stratified extracellular matrix situated between the retinal pigmented epithelium and choriocapillaris. Because of this association, we sought to determine whether drusen contain known extracellular matrix constituents. Antibodies directed against a battery of extracellular matrix molecules were screened on drusen-containing sections from human donor eyes, including donors with clinically documented AMD. Antibodies directed against vitronectin, a plasma protein and extracellular matrix component, exhibit intense and consistent reactivity with drusen; antibodies to the conformationally distinct, heparin binding form of human vitronectin are similarly immunoreactive. No differences in vitronectin immunoreactivity between hard and soft drusen, or between macular and extramacular regions, have been observed. RT-PCR analyses revealed that vitronectin mRNA is expressed in the retinal pigmented epithelium (RPE)-choroidal complex and cultured RPE cells. These data document that vitronectin is a major constituent of human ocular drusen and that vitronectin mRNA is synthesized locally. Based on these data, we propose that vitronectin may participate in the pathogenesis of AMD.  相似文献   

10.
目的:建立胎儿视网膜色素上皮细胞(fRPE)的原代培养方法。方法分离流产胎儿RPE,并进行体外原代培养、传代,免疫荧光检测培养RPE细胞分子标志物。以β细胞增殖诱导剂(二芳基脲衍生物WS3)刺激RPE细胞增殖,并测量其生长曲线。3组细胞比较采用单因素F检验。结果源自不同胎儿的fRPE细胞在原代及体外增殖中并未表现出明显不同。在体外扩增的4代fRPE中,100﹪的细胞表现出了良好的细胞形态。免疫荧光染色证实了体外扩增的fRPE细胞可很好的表达RPE细胞标记物。WS3未见有刺激RPE细胞体外增殖的作用。培养后不同时间三组细胞差异均有统计学意义(F=119.437~234.368,P均=0.000)。结论 fRPE细胞可在非复杂的培养环境中实现体外大量增殖,这些体外增殖的fRPE细胞可以为RPE移植细胞治疗视网膜黄斑病变提供丰富的细胞来源。  相似文献   

11.
12.
13.
The accumulation of lipofuscin by retinal pigment epithelium may be an important feature in the pathogenesis of age-related macular degeneration, suggesting the possibility that this common cause of blindness might be prevented or delayed by antioxidants. In support of this idea, we now report significantly reduced formation of lipofuscin when the antioxidant substances lutein, zeaxanthin, lycopene (carotenoids), or alpha-tocopherol were added to rabbit and bovine (calf) retinal pigment epithelial (RPE) cells exposed to normobaric hyperoxia (40%) and photoreceptor outer segments. Rabbit and calf RPE cells were grown for 2 weeks with addition of one of the test substances every 48 h. The cellular uptake of carotenoids and alpha-tocopherol was assayed by HPLC after 2 weeks. The lipofuscin-content was measured by static fluorometry (rabbit cells) or by image analysis (calf cells). Both rabbit and calf RPE showed similar results with significantly lower amounts of lipofuscin in antioxidant-treated cells. The effect of carotenoids is especially interesting, since the result is not dependent on their protective effect against photo-oxidative reactions. The chain-breaking abilities of these antioxidants in peroxidative reactions of lipid membranes and quenching of free radicals seem to be of importance for inhibition of lipofuscin formation.  相似文献   

14.
《Autophagy》2013,9(11):1989-2005
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.  相似文献   

15.
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.  相似文献   

16.
Age related macular degeneration (AMD) is a progressive, neurodegenerative disorder that leads to the severe loss of central vision in elderlies. The health of retinal pigment epithelial (RPE) cells is critical for the onset of AMD. Chronic oxidative stress along with loss of lysosomal activity is a major cause for RPE cell death during AMD. Hence, development of a molecule for targeted lysosomal delivery of therapeutic protein/drugs in RPE cells is important to prevent RPE cell death during AMD. Using human RPE cell line (ARPE-19 cells) as a study model, we confirmed that hydrogen peroxide (H2O2) induced oxidative stress results in CD44 cell surface receptor overexpression in RPE cells; hence, an important target for specific delivery to RPE cells during oxidative stress. We also demonstrate that the known nucleic acid CD44 aptamer - conjugated with a fluorescent probe (FITC) - is delivered into the lysosomes of CD44 expressing ARPE-19 cells. Hence, as a proof of concept, we demonstrate that CD44 aptamer may be used for lysosomal delivery of cargo to RPE cells under oxidative stress, similar to AMD condition. Since oxidative stress may induce wet and dry AMD, both, along with proliferative vitreoretinopathy, CD44 aptamer may be applicable as a carrier for targeted lysosomal delivery of therapeutic cargoes in ocular diseases showing oxidative stress in RPE cells.  相似文献   

17.
The study and treatment of age-related macular degeneration (AMD), a leading cause of blindness, has been hampered by a lack of animal models. Here we report that mice deficient either in monocyte chemoattractant protein-1 (Ccl-2; also known as MCP-1) or its cognate C-C chemokine receptor-2 (Ccr-2) develop cardinal features of AMD, including accumulation of lipofuscin in and drusen beneath the retinal pigmented epithelium (RPE), photoreceptor atrophy and choroidal neovascularization (CNV). Complement and IgG deposition in RPE and choroid accompanies senescence in this model, as in human AMD. RPE or choroidal endothelial production of Ccl-2 induced by complement C5a and IgG may mediate choroidal macrophage infiltration into aged wild-type choroids. Wild-type choroidal macrophages degrade C5 and IgG in eye sections of Ccl2(-/-) or Ccr2(-/-) mice. Impaired macrophage recruitment may allow accumulation of C5a and IgG, which induces vascular endothelial growth factor (VEGF) production by RPE, possibly mediating development of CNV. These models implicate macrophage dysfunction in AMD pathogenesis and may be useful as a platform for validating therapies.  相似文献   

18.
The eye uses vitamin A as a cofactor to sense light and, during this process, some vitamin A molecules dimerize, forming vitamin A dimers. A striking chemical signature of retinas undergoing degeneration in major eye diseases such as age-related macular degeneration (AMD) and Stargardt disease is the accumulation of these dimers in the retinal pigment epithelium (RPE) and Bruch’s membrane (BM). However, it is not known whether dimers of vitamin A are secondary symptoms or primary insults that drive degeneration. Here, we present a chromatography-free method to prepare gram quantities of the vitamin A dimer, A2E, and show that intravenous administration of A2E to the rabbit results in retinal degeneration. A2E-damaged photoreceptors and RPE cells triggered inflammation, induced remolding of the choroidal vasculature and triggered a decline in the retina’s response to light. Data suggest that vitamin A dimers are not bystanders, but can be primary drivers of retinal degeneration. Thus, preventing dimer formation could be a preemptive strategy to address serious forms of blindness.KEY WORDS: Vitamin A, Neurodegeneration, Bisretinoids, A2E, RPE, Vitamin A dimer, Age-related macular degeneration, AMD, Stargardt  相似文献   

19.

Background

Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly population. Debris (termed drusen) below the retinal pigment epithelium (RPE) have been recognized as a risk factor for dry AMD and its progression to wet AMD, which is characterized by choroidal neovascularization (CNV). The underlying mechanism of how drusen might elicit CNV remains undefined. Cigarette smoking, oxidative damage to the RPE and inflammation are postulated to be involved in the pathophysiology of the disease. To better understand the cellular mechanism(s) linking oxidative stress and inflammation to AMD, we examined the expression of pro-inflammatory monocyte chemoattractant protein-1 (MCP-1), pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial derived factor (PEDF) in RPE from smoker patients with AMD. We also evaluated the effects of hydroquinone (HQ), a major pro-oxidant in cigarette smoke on MCP-1, VEGF and PEDF expression in cultured ARPE-19 cells and RPE/choroids from C57BL/6 mice.

Principal Findings

MCP-1, VEGF and PEDF expression was examined by real-time PCR, Western blot, and ELISA. Low levels of MCP-1 protein were detected in RPE from AMD smoker patients relative to controls. Both MCP-1 mRNA and protein were downregulated in ARPE-19 cells and RPE/choroids from C57BL/6 mice after 5 days and 3 weeks of exposure to HQ-induced oxidative injury. VEGF protein expression was increased and PEDF protein expression was decreased in RPE from smoker patients with AMD versus controls resulting in increased VEGF/PEDF ratio. Treatment with HQ for 5 days and 3 weeks increased the VEGF/PEDF ratio in vitro and in vivo.

Conclusion

We propose that impaired RPE-derived MCP-1-mediated scavenging macrophages recruitment and phagocytosis might lead to incomplete clearance of proinflammatory debris and infiltration of proangiogenic macrophages which along with increased VEGF/PEDF ratio favoring angiogenesis might promote drusen accumulation and progression to CNV in smoker patients with dry AMD.  相似文献   

20.
Retinal pigment epithelium (RPE) degeneration plays an important role in a group of retinal disorders such as retinal degeneration (RD) and age-related macular degeneration (AMD). The mechanism of RPE cell death is not yet fully elucidated. Ferroptosis, a novel regulated cell death pathway, participates in cancer and several neurodegenerative diseases. Glutathione peroxidase 4 (GPx-4) and ferroptosis suppressor protein 1 (FSP1) have been proposed to be two main regulators of ferroptosis in these diseases; yet, their roles in RPE degeneration remain elusive. Here, we report that both FSP1-CoQ10-NADH and GSH-GPx-4 pathways inhibit retinal ferroptosis in sodium iodate (SIO)-induced retinal degeneration pathologies in human primary RPE cells (HRPEpiC), ARPE-19 cell line, and mice. GSH-GPx-4 signaling was compromised after a toxic injury caused by SIO, which was aggravated by silencing GPx-4, and ferroptosis inhibitors robustly protected RPE cells from the challenge. Interestingly, while inhibition of FSP1 caused RPE cell death, which was aggravated by SIO exposure, overexpression of FSP1 effectively protected RPE cells from SIO-induced injury, accompanied by a significant down-regulation of CoQ10/NADH and lipid peroxidation. Most importantly, in vivo results showed that Ferrostatin-1 not only remarkably alleviated SIO-induced RPE cell loss, photoreceptor death, and retinal dysfunction but also significantly ameliorated the compromised GSH-GPx-4 and FSP1-CoQ10-NADH signaling in RPE cells isolated from SIO-induced RPE degeneration. These data describe a distinct role for ferroptosis in controlling RPE cell death in vitro and in vivo and may provide a new avenue for identifying treatment targets for RPE degeneration.Subject terms: Apoptosis, Neurodegenerative diseases, Experimental models of disease  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号