首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Summary— Human α1-acid glycoprotein (AGP or orosomucoid) is a major glycoprotein of plasma. AGP can be separated on immobilized concanavalin A into three variants bearing none (AGP A), one (AGP B) or two (AGP C) biantennary glycans. In this paper, we show, using flow cytometry and confocal microscopy, that AGP C which is eluted from concanavalin A with mannose, binds to human monocytes, monocyte-derived macrophages as well as human promonocytic cell lines such as THP1 or U937. Conversely HL60, a promyelocytic cell line, does not express the surface AGP C binding protein. AGP C is internalized and degraded with an efficiency depending on the state of differentiation of these cells. In contrast, AGP A which is not recognized by concanavalin A, does not bind to any of these cells.  相似文献   

2.
5'-Nucleotidase, an integral glycoprotein enzyme of the lymphocyte plasma membrane, is inhibited cooperatively by the lectin concanavalin A. Because divalent succinyl-concanavalin A is a poor enzyme inhibitor, both binding and lectin-induced cross-linking of 5'-nucleotidase may be necessary for inhibition. Succinyl-concanavalin A does not compete with concanavalin A for binding to the enzyme; however, maleyl-concanavalin A, another poor inhibitor, competes effectively with the parent lectin. Thus, maleyl-concanavalin A binds to the same site as concanavalin A but causes little inhibition, whereas succinyl-concanavalin A does not bind to this site. The monovalent lectin from Ricinus communis (RCA-60) is a more effective enzyme inhibitor than the related divalent lectin (RCA-120), and inactivation of the second low-affinity sugar binding site on RCA-60 does not abolish inhibition, suggesting that multivalent cross-linking is not required for 5'-nucleotidase inhibition. Peanut and wheat germ agglutinins do not inhibit the enzyme, whereas lectins from lentil, pea, soybean, Griffonia simplicifolia, and Phaseolus vulgaris inhibit 5'-nucleotidase with various degrees of effectiveness. The only lectin showing strong positive cooperativity in its interaction with 5'-nucleotidase is concanavalin A.  相似文献   

3.
Concanavalin A is capable of activating platelets in a concentration-dependent manner as judged by [14C]serotonin secretion from prelabeled platelets. In contrast, succinyl concanavalin A does not induce platelet secretion. Concanavalin A treatment also results in a number of alterations in platelet macromolecules which are presumably associated with the process of platelet activation. These include the phosphorylation of 20 and 47 kDa platelet proteins, the increased polymerization and association of new proteins with the platelet cytoskeleton and the association of the platelet membrane glycoprotein IIb/III complex with the platelet cytoskeleton. Succinyl concanavalin A treatment results in none of these macromolecular events. This difference is observed despite the demonstration that both lectins bind to the platelet surface. Gel overlay experiments also indicate that concanavalin A and succinyl concanavalin A bind to the same receptors. These differences in the biological effects of concanavalin A and succinyl concanavalin A on platelets may be due to decreased receptor crosslinking by the succinylated derivative. The formation of multiple linked interactions between surface receptors may be an important event in the activation of platelets by concanavalin A.  相似文献   

4.
Human fibroblast interferon binds to a concanavalin A-agarose (Con A-Sepharose) equilibrated with methyl alpha-D-mannopyranoside, or levan; in contrast, it is only partially retarded on a similar column equilibrated with ethylene glycol. Interferon does not bind, however, to a lectin column equilibrated with both methyl alpha-D-mannopyranoside and ethylene glycol. Thus, a hydrophobic interaction between fibroblast interferon and the immobilized lectin seems to account for a large portion of the binding forces involved. Other hydrophobic solutes, such as dioxane, 1, 2-propanediol, and tetraethylammonium chloride, were found equally or more efficient than ethylene glycol in displacing interferon from the lectin column. The elution pattern of interferon from a concanavalin A-agarose (Con A-Sepharose) column, at a constant ehtylene glycol concentration and with an increasing mannoside concentration, reveals the existence of four distinct interferon components. The selective adsorption to and elution from a concanavalin A-agarose (Con A-Sepharose) column resulted in about a 3000-fold purification of human fibroblast interferon and complete recovery of activity. The specific activity of the partially purified interferon preparation is about 5 X 10(7) units per mg of protein. The chromatographic behavior of human leukocyte interferon is remarkable in that it does not bind to concanavalin A-agarose at all indicating the absence of carbohydrate moieties recognizable by the lectin, or if present, their masked status. When concanavalin A was coupled to an agarose matrix (cyanogen bromide activated) at pH 8.0 and 6.0 human fibroblast interferon bound to both lectin-agarose adsorbents and could be recovered with methyl alpha-D-mannopyranoside. Concanavalin A, immobilized directly on agarose matrix at pH 8.0 and 6.0, thus displays only carbohydrate recognition toward interferon. By contrast, unless a hydrophobic solute was included in the solvent containing methyl mannoside, human fibroblast interferon could not be recovered from concanavalin A-agarose coupled at pH 9.0. When concanavalin A was immobilized via molecular arms, in tetrameric as well as dimeric forms, the binding of interferon again occurred exclusively through carbohydrate recognition. Thus, the hydrophobic interaction can be eliminated by appropriate immobilization of the lectin, and then adsorbed glycoproteins, as exemplified here by interferon, can be recovered readily with methyl mannoside alone.  相似文献   

5.
The mode of binding of 125I-labelled concanavalin A and succinyl-concanavalin A to rat thymocytes at 4 degrees C was investigated. Simultaneously, the free binding sites of the cell-bound lectin molecules were quantified by horseradish peroxidase binding. Concanavalin A showed cooperative binding while succinyl-concanavalin A did not. The number of molecules of concanavalin A bound to the cell surface when it was saturated was twice the number of molecules of succinyl-concanavalin A. We interpret these results as showing that the binding of native concanavalin A to thymocytes at 4 degrees C brings about a cooperative modification of the membrane which leads to appearance of new receptors. Divalent succinyl-concanavalin A has no such effect. Horseradish peroxidase binding to cell-bound lectin was shown to be related to the immobilization of membrane receptors; the more they are immobilized, the more receptor-associated lectin can bind horseradish peroxidase. This allowed us to establish that post-binding events, which we called micro-redistribution, occurred at 4 degrees C when either concanavalin A or succinyl-concanavalin A binds to cells. A cooperative restriction of the micromobility of cell receptors is produced by increasing concentrations of concanavalin A. Succinyl-concanavalin A does not restrict cell receptor mobility at any concentration tested. The results are discussed in terms of cell stimulation and cell agglutination.  相似文献   

6.
Concanavalin A dimer interacts with fibrinogen and soluble fibrin at pH 5.2 Analysis of the binding data shows that there are in both cases four binding sites per molecule and that the dissociation constant does not change by removal of fibrinopeptides A and B. Ultracentrifugal studies shows that no aggregates of fibrinogen or fibrin are formed through concanavalin A binding and that up to four molecules of concanavalin A dimer can be bind to one molecule of fibrinogen or fibrin. These results imply that the four carbohydrate chains in the molecule are accessible to concanavalin A dimer. There is a diminution in the coagulation of fibrinogen by thrombin at low relative lectin concentrations and an increase at high concentrations. However, the lectin always favours the aggregation of fibrin monomers and does not have any inhibitory effect on the release of fibrinopeptides. We conclude that the electric charge in the neighbourhood of the carbohydrate in both chains, Bβ and γ plays an important role in the attraction between monomeric fibrin and fibrinogen-monomeric fibrin. The different effect of concanavalin A on the coagulation, depending on the relative concentration of the lectin, would be the result of the screening of this electric charge favouring either the interaction of fibrinogen-monomeric fibrin or the polymerization of monomeric fibrin.  相似文献   

7.
The possible modes of binding for methyl-α-d-mannopyranoside, methyl-β-d-mannopyranoside, 2-O-methyl-α-d-mannopyranoside, methyl-2-O-methyl-α-d-mannopyranoside and methyl-α-d-N-acetylmannosamine to concanavalin A have been investigated using theoretical methods. All these sugars, except methyl-α-d-N-acetylmannosamine, reach the active site of concanavalin A with a highly restricted number of binding orientations. Present investigations suggest that the failure of methyl-α-d-N-acetylmannosamine to bind to concanavalin A is not so much due to steric factors as to repulsive electrostatic interactions. Methyl-2-O-methyl-α-d-mannopyranoside can bind to concanavalin A in one mode whereas the other sugars can bind in more than one mode. The high potency of methyl-α-d-mannopyranoside over methyl-β-d-mannopyranoside is mainly due to the possibility of hydrophobic interactions of the α-methoxy group with Leu(99) or Tyr(100) and also due to the possibility of formation of better and more hydrogen bonds with the protein. A comparison of these data with those for the d-glucopyranosides suggests that the change of the hydroxyl at the C-2 atom from equatorial to axial orientation increases the stereochemically allowed region as well as the possible binding modes. From these studies it is also suggested that the overall shape of the oligosaccharides rather than the terminal or internal mannose alone affects the binding potency of saccharides to concanavalin A.  相似文献   

8.
Concanavalin Å is visibly aggregated by low concentrations of sodium dodecyl sulfate, maximum aggregation being obtained at pH 4.6. Other denaturants, such as urea, guanidine hydrochloride, Triton X-100, cetyltrimethylammonium bromide, Tween 80, and Brij 35 are ineffective in promoting visible aggregation. The sodium dodecyl sulfate-induced aggregation of concanavalin Å requires the presence of an intact, saccharide-ligand binding-site. Rapid and complete reversal of the detergent effect was achieved by use of saccharides which bind to the lectin. Such compounds as tryptophan and o-nitrophenyl β-d-galactopyranoside did not inhibit the aggregation of concanavalin Å by sodium dodecyl sulfate, suggesting that the detergent does not bind the hydrophobic pocket on the surface of the protein. The results suggest that concanavalin Å may have an additional, ligand-binding site which is netal-dependent and which can be modified by the addition of a saccharide ligand.  相似文献   

9.
Whether intact or dissociated with digitonin, chitosomes isolated from the fungusMucor rouxii lack the ability to bind concanavalin A. The absence of external or internal concanavalin A-binding sites distinguishes the chitosome membrane no only from plasma membrane but also from membranes of other organelles (endoplasmic reticulum, mitochondrion, vacuole). This differential binding ability was used to partially separate chitosomal chitin synthetase from major membranes in a crude cell-free extract ofM. rouxii.  相似文献   

10.
Parasite antigenic fractions obtained by biochemical purification of sheep hydatid fluid were subjected to enzymatic digestion. The relative mobilities of the 5 and B antigens, before and after treatment, were analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. Antigenic fractions transferred to nitrocellulose were also treated with sodium metaperiodate and concanavalin A. The results indicate that antigen 5 contains a substantial amount of carbohydrates covalently linked to a polypeptide backbone, which strongly bind to concanavalin A and is removed by N-glycosidase F (PNGase F). Antigen 5 possesses complex N-linked oligosaccharides (PNGase F sensitive), without terminal N-acetyl-D-glucosamine residues (N-acetyl-D-glucosaminidase nonsensitive) and has no high-mannose oligosaccharides (endo-beta-N-acetylglucosaminidase H nonsensitive). In contrast, the antigen B of low molecular weight is not susceptible to either enzymatic digestions (PNGase F, Endo H, and N-acetyl-D-glucosaminidase) or sodium metaperiodate oxidation and it does not bind to concanavalin A. Polyclonal antibodies prepared against the two antigens reacted with the deglycosylated antigen 5 in Western blot. The dominant epitopes are, therefore, polypeptides, although the presence of carbohydrate epitopes in the native glycoproteins cannot be excluded.  相似文献   

11.
The effect of fibrinogen coagulation and fibrinolysis of the mannose-specific lectins concanavalin A, its acetyl derivative and Lens culinaris agglutinin was studied. Concanavalin A and acetyl-concanavalin A, which bind to the four carbohydrate chains of fibrinogen, and L. culinaris agglutinin, which only binds to the carbohydrate present in fibrinogen D domains, has the same effect on the coagulation rate: and inhibition at low lectin concentrations and an increase at high concentrations. On the other hand, L. culinaris agglutinin does not alter fibrin crosslinking while acetyl-concanavalin A produces a slight inhibition of both γ-γ and α-polymer formation. However, this effect is very small when compared with the clear inhibitory effect produced by concanavalin A. Concanavalin A and acetyl-concanavalin A have an inhibitory effect on the rate of fibrin clot lysis proportional to the lectin concentration. Near 100% inhibition was obtained when two lectin-binding sites were occupied by either concanavalin A or acetyl-concanavalin A. However, L. culinaris agglutinin has a clearly weaker effect and more than 50% inhibition was not observed. The comparative study of the effect of the three lectins on fibrinolysis as well as on the formation of fibrinogen aggregates suggests that the inhibitory effect of concanavalin A and acetyl-concanavalin A is primarily due to their binding to the carbohydrate chains of fibrinogen E domain.  相似文献   

12.
Inhibition of hamster fertilization by phytoagglutinins   总被引:4,自引:0,他引:4  
Unfertilized eggs of the golden hamster were treated with phytoagglutinins and inseminated in vitro with capacitated spermatozoa. Ricinus communis agglutinin was most effective in preventing fertilization, followed by wheat germ agglutinin, Dolichos biflorus agglutinin and finally concanavalin A. The agglutinin-mediated block to fertilization is related to the saccharide-binding activities of agglutinins, because inclusion of the appropriate saccharide inhibitor counteracted the actions of the agglutinins. It is proposed that the agglutinins bind to specific oligosaccharides of the zona pellucida and induce extensive cross-linking of adjacent saccharide chains in such a way that sperm-born zona lysins can no longer depolymerize the zona material. Spermatozoa failed to bind to zona surfaces following treatment of eggs with high concentrations of wheat germ agglutinin, but not with the other agglutinins, suggesting that N-acetyl- -glucosamine-like or N-acetylneuraminic acid-like residues may be essential or sterically close to sperm attachment sites on the zona pellucida of the hamster egg.  相似文献   

13.
Murine T-lymphomas and Thy-1- mutants were labeled overnight with [3H]ethanolamine to detect proteins which possess a glycophospholipid anchor. When labeled cells were treated with 10% trichloroacetic acid and then analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography, both Thy-1 and a second intensely labeled protein (46 kDa) were observed. The presence of the radiolabeled 46-kDa protein in wild type and class E Thy-1 negative cells (cells in which Thy-1 is synthesized but cannot be labeled with [3H]ethanolamine) suggested incorporation into a distinct moiety. Labeling of the 46-kDa protein with [3H]ethanolamine is rapidly inhibited by cycloheximide. Further characterization of the 46-kDa protein by subcellular fractionation and Triton X-114 partitioning indicated that the protein is located in the cytosol. The protein is basic and does not bind to either concanavalin A or wheat germ agglutinin. Labeling of a 46-kDa protein has also been demonstrated in Chinese hamster ovary, COS, rat myeloma, cloned human T-lymphocytes, and HeLa cells. Pronase digestion of the [3H]ethanolamine-labeled 46-kDa protein of wild type lymphoma cells generated a nonbasic and polar labeled fragment which is labile to strong acid and base ([3H]ethanolamine is liberated), insensitive to periodate oxidation and alkaline phosphatase, and does not bind to concanavalin A or wheat germ agglutinin. Judging from methylation studies, the labeled ethanolamine residue does not contain a free amino group. Based on these results, we report a novel post-translational modification of selected protein(s) by the covalent addition of [3H]ethanolamine.  相似文献   

14.
Stimulation of human platelets with concanavalin A resulted in a significant increase in the concentration of cytoplasmic free Ca2+. This effect was due to two different processes: Ca2+ mobilization from internal stores and Ca2+ influx from the extracellular medium. Kinetic analysis revealed that the release of Ca2+ from internal storage sites occurred sooner than the opening of plasma membrane Ca2+ channels. The ability of concanavalin A to induce a sustained increase in cytoplasmic Ca2+ concentration was antagonized and reversed by methyl ∝-D -mannopyranoside, demonstrating that it was promoted by the interaction of the lectin with cell surface glycoproteins. Succinyl–concanavalin A, a dimeric derivative of the lectin, that does not promote patching/capping of the receptor, was able to bind to the platelet surface, and antagonized the effects of native concanavalin A. In addition, succinyl–concanavalin A, per se, was unable to induce Ca2+ mobilization in human platelets. Therefore, the action of the native concanavalin A was mediated by receptor clustering events. Concanavalin A mobilized Ca2+ from the same internal stores from which Ca2+ was mobilized in response to strong platelet agonists, such as thrombin and arachidonic acid. However, while thrombin was ineffective in inducing Ca2+ release after stimulation of platelets with Con A, Con A was able to cause a full discharge of Ca2+ from internal stores even in platelets previously stimulated with thrombin. These results demonstrate for the first time that the clustering of specific membrane glycoproteins can trigger platelet activation. The physiological implications during platelet aggregation are discussed.  相似文献   

15.
Concanavalin A added to intact cells at 37 degrees caused rapid and reversible inactivation of a soluble enzyme, tyrosine aminotransferase, in two lines of rat hepatoma tissue culture cells grown in monolayer culture. This temperature-dependent process was independent of de novo protein and RNA synthesis and independent of increased uptake of Ca2+ and Mg2+ or glucose. The inactivation could be reversed by adding alpha-methyl-D-mannopyranoside a competing sugar for concanavalin A binding. Other lectins known to bind to different sugars did not bring about the inactivation of tyrosine aminotransferase. Addition of concanavalin A did not result in the inactivation of another soluble enzyme, lactic dehydrogenase. The maintenance of tyrosine aminotransferase in an inactive form after the binding of concanavalin A to the cells required the continued presence of concanavalin A. This effect of concanavalin A could not be mimicked either by dibutyryl cyclic adenosine or guanosine monophosphoric acid. Incubation of cell extracts with concanavalin A did not result in inactivation nor did mixing of extracts from concanavalin A-treated cells with extracts from untreated cells. On the basis of these results we conclude that the following are the essential requirements for concanavalin A to bring about the inactivation of tyrosine aminotransferase: (a) the binding of native concanavalin A to the cells; (b) integrity of certain structural elements of the cells.  相似文献   

16.
S Wonnacott  R Harrison  G G Lunt 《Life sciences》1980,27(19):1769-1775
The relationship of the carbohydrate components of purified acetylcholine receptor (AChR) to its acetylcholine binding site was investigated by two approaches. In the first, the effect of periodate or glycosidase treatment of AChR on its ability to bind α-bungarotoxin was assessed. Although loss of binding capacity was observed, this could be attributed to increased temperature, acid pH or high salt concentrations of the incubation conditions rather than to the specific action of periodate or glycosidases, indicating that the α-toxin binding site does not directly involve carbohydrate.The second approach involved the use of concanavalin A to block the binding of α-toxin to AChR, when a maximum inhibition of approximately 40% was obtained. The results are interpreted in terms of heterogeneity of AChR molecules, of which some 40% have sterically interacting sites binding concanavalin A and α-toxin respectively.  相似文献   

17.
R. D. Prusch 《Protoplasma》1981,106(3-4):223-230
Summary Addition of concanavalin A to a suspension ofAmoeba proteus brings about cellular agglutination and the formation of what appear to be pinocytotic channels in cell surface projections. Although concanavalin A apparently brings about pinocytotic channel formation, it does not elicit bulk medium uptake or surface membrane turnover. Cytochalasin B brings about an initial cessation of locomotion and the development of a number of randomly distributed pseudopods. After a 30 to 45 minute exposure to cytochalasin B, the cells resume their normal appearance and pattern of locomotion. Cytochalasin B itself has no influence on inducing pinocytotic channel formation or membrane turnover, but when pinocytosis is induced with 0.01% alcian blue, pinocytotic activity is greatly intensified by the presence of cytochalasin B.  相似文献   

18.
Conditions for the reaction of concanavalin A and dextranase with glutaraldehyde have been established to give a soluble, intermolecularly cross-linked conjugate possessing both dextranase and concanavalin activities. Evidence is presented that the dextranase and concanavalin molecules are linked to each other in the conjugate. The conjugate gives a different pattern of hydrolysis products on incubation with dextran than does dextranase.  相似文献   

19.
The probable modes of binding for methyl-α-d-sophoroside, methyl-β-d-sophoroside, laminariboise and cellobiose to concanavalin A have been determined using theoretical methods. Methyl-d-sophorosides can bind to concanavalin A in two modes, i.e. by placing their reducing as well as non-reducing sugar units in the carbohydrate specific binding site, whereas laminaribiose and cellobiose can reach the binding site only with their non-reducing glucose units. However, the probability for methyl-α-d-sophoroside to bind to concanavalin A with its reducing sugar residue as the occupant of the binding site is much higher than it is with its non-reducing sugar residue as the occupant of the sugar binding site. A few of the probable conformers of methyl-β-d-sophoroside can bind to concanavalin A with either the reducing or non-reducing glucose unit. Higher energy conformers of cellobiose or laminaribiose can reach the binding site with their non-reducing residues alone. The relative differences in the binding affinities of these disaccharides are mainly due to the differences in the availability of proper conformers which can reach the binding site and to non-covalent interactions between the sugar and the protein. This study also suggests that though the sugar binding site of concanavalin A accommodates a single sugar residue, the residue outwards from the binding site also interacts with concanavalin A, indicating the existence of extended concanavalin A carbohydrate interactions.  相似文献   

20.
R K Baker  M O Lively 《Biochemistry》1987,26(26):8561-8567
Hen oviduct signal peptidase requires only two proteins for proteolysis of fully synthesized secretory precursor proteins in vitro: one with a molecular mass of 19 kilodaltons (kDa) and one which is a glycoprotein whose mass varies from 22 to 24 kDa depending on the extent of glycosylation. Purified signal peptidase has been analyzed both as part of an active catalytic unit and after electroelution of the individual proteins out of a preparative polyacrylamide gel. The multiple forms of the glycoprotein component of signal peptidase bind to concanavalin A and are shown to be derived from the same polypeptide backbone. Removal of their oligosaccharides by digestion with N-glycanase converts these proteins to a single 19.5-kDa polypeptide. The glycoproteins all exhibit very similar profiles following individual digestion with trypsin and separation of the resulting peptides by reverse-phase high-performance liquid chromatography. In addition, sequence analysis of selected peptides from corresponding regions in chromatograms representing each form of the glycoprotein reveals the same amino acid sequences. The 19-kDa signal peptidase protein does not bind concanavalin A, has a distinct tryptic peptide map from that of the glycoprotein, and appears to share no amino acid sequences in common with the glycoprotein. Its copurification on a concanavalin A-Sepharose column indicates that it must interact directly with the glycoprotein subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号