首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two herbicide-resistant strains of the cyanobacterium Synechococcus sp. PCC 7002 are compared to the wild-type with respect to the DNA changes which result in herbicide resstance. The mutations have previously been mapped to a region of the cyanobacterial genome which encodes oneof three copies of psbA, the gene which encodes the 32 kDa Qb-binding protein also known as D1 (Buzby et al. 1987). The DNA sequence of the wild-type gene was first determined and used as a comparison to that of the mutant alleles. A point mutation at codon 211 in the psbA1 coding locus (TTC) to TCC) results in an amino acid change from phenylalanine to serine in the D1 protein. This mutation confers resistance to atrazine and diuron at seven times and at two times the minimal inhibitory concentration (MIC) for the wild-type, respectively. A mutation at codon 211 resulting in herbicide resistance has not previously been described in the literature. A second point mutation at codon 219 in the psbA1 coding locus (GTA to ATA) results in an amino acid change from valine to isoleucine in the D1 protein. This mutation confers resistance to diuron and atrazine at ten times and at two times the MIC for the wild-type, respectively. An identical codon change conferring similar herbicide resistance patterns has previously been described in Chlamydomonas reinhardtii. The atrazine-resistance phenotype in Synechococcus sp. PCC 7002 was shown to be dominant by plasmid segregation analysis.Abbreviations At r atrazine resistance - Du r diuron resistance - Km r kanamycin resistance - Ap r ampicillin resistance - MIC Minimum inhibitory concentration  相似文献   

2.
We have used the diuron-resistant Dr2 mutant of Chlamydomonas reinhardtii which is altered in the 32 kilodalton QB-protein at amino acid 219 (valine to isoleucine), to investigate the interactions of herbicides and plastoquinone with the 32 kilodalton QB-protein. The data contained in this report demonstrate that the effects of this mutation are different from those of the more completely characterized mutant which confers extreme resistance to triazines in higher plants. The mutation in C. reinhardtii Dr2 confers only slight resistance to a number of inhibitors of photosynthetic electron transport. Extreme triazine resistance results from an increase in the binding constant of the herbicide with the 32 kilodalton QB-protein, in contrast the diuron binding constant for chloroplasts isolated from wild-type (sensitive) Chlamydomonas and the resistant Dr2 are indistinguishable. We conclude that the altered structure in the 32 kilodalton QB-protein of Dr2 does not directly affect the diuron binding site. This mutation appears to alter the steric properties of the binding protein in such a way that diuron and plastoquinone do not directly compete for binding. This steric perturbation confers mild resistance to other herbicidal inhibitors of photosynthesis and alters the kinetics of QA to QB electron transfer.  相似文献   

3.
Plants and green algae can develop resistance to herbicides that block photosynthesis by competing with quinones in binding to the chloroplast photosystem II (PSII) D1 polypeptide. Because numerous herbicide-resistant mutants of Chlamydomonas reinhardtii with different patterns of resistance to such herbicides are readily isolated, this system provides a powerful tool for examining the interactions of herbicides and endogenous quinones with the photosynthetic membrane, and for studying the structure-function relationship of the D1 protein with respect to PSII electron transfer. Here we report the results of DNA sequence analysis of the D1 gene from four mutants not previously characterized at the molecular level, the correlation of changes in specific amino acid residues of the D1 protein with levels of resistance to the herbicides atrizine, diuron, and bromacil, and the kinetics of fluorescence decay for each mutant, which show that changes at two different amino acid residues dramatically slow PSII electron transfer. Our analyses, which identify a region of 57 amino acids of the D1 polypeptide involved in herbicide binding and which define a D1 binding niche for the second quinone acceptor, QB of PSII, provide a strong basis of support for structural and functional models of the PSII reaction center.  相似文献   

4.
The effects of the photosystem II herbicides diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) on the photosynthetic membranes of a cyanobacterium, Aphanocapsa 6308, were compared to the effects on a higher plant, Spinacia oleracea. The inhibition of photosystem II electron transport by these herbicides was investigated by measuring the photoreduction of the dye 2,6-dichlorophenol-indophenol spectrophotometrically using isolated membranes. The concentration of herbicide that caused 50% inhibition of electron transport (I50 value) in Aphanocapsa membranes for diuron was 6.8 × 10−9 molar and the I50 value for atrazine was 8.8 × 10−8 molar. 14C-labeled diuron and atrazine were used to investigate herbicide binding with calculated binding constants (K) being 8.2 × 10−8 molar for atrazine and 1.7 × 10−7 molar for diuron. Competitive binding studies carried out on Aphanocapsa membranes using radiolabeled [14C]atrazine and unlabeled diuron revealed that diuron competed with atrazine for the herbicide-binding site. Experiments involving the photoaffinity label [14C]azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-2-triazine) and autoradiography of polyacrylamide gels indicated that the herbicide atrazine binds to a 32-kilodalton protein in Aphanocapsa 6308 cell extracts.  相似文献   

5.
A series of Chlamydomonas reinhardii mutants were selected for resistance to the herbicides atrazine, bromacil, and diuron. Four of these have reduced herbicide binding to the thylakoid membranes and show the non-Mendelian inheritance pattern characteristic of chloroplast genes. These mutants show a variety of selective alterations in binding of the three herbicides. These changes account for the observed patterns of in vivo cross-resistance. Analyses of chloroplast gene recombination indicate that these four mutations are in the same gene. Overall, the results suggest that this gene codes for a protein component of the herbicide binding site. One of the mutants has slow phototrophic growth and altered electron transport as has been observed in atrazine-resistant higher plant varieties, but the others are normal in these respects. The slow growth characteristic of this mutant seems to be the consequence of the same mutation which confers herbicide resistance.

The mutants isolated also include a large number which achieve resistance by some secondary mechanism. These are all nuclear gene mutations, and represent numerous loci. They also show a variety of patterns of cross-resistance, but the mechanisms behind them have not yet been investigated.

  相似文献   

6.
7.
PS II membrane fragments produced from higher plant thylakoids by Triton X-100 treatment exhibit strong photoinhibition and concomitant fast degradation of the D1 protein. Involvement of (molecular) oxygen is necessary for degradation of the D1 protein.The herbicides atrazine and diuron, but not ioxynil, partly protect the D1 protein against degradation. Binding of atrazine to the D1 protein is necessary to protect the D1 polypeptide, as shown with PS II membrane fragments from an atrazine-resistant biotype of Chenopodium album which are protected by diuron not by atrazine.Abbreviations atrazine 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine - Chl chlorophyll, diuron - (DCMU) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMBQ 2,5-dimethyl-p-benzoquinone - DCIP 2,6-dichlorophenol indophenol - DPC diphenylcarbazide - ioxynil 4-cyano-2,6-diiodophenol - kb binding constant - Mes 4-morpholinoethanesulfonic acid - P-680 reaction-center chlorophyll a of photosystem-II - PAGE polyacrylamide gel electrophoresis - PS II photosystem-II - QA and QB primary and secondary quinone electron acceptors - Z electron donor to the photosystem-II reaction center - SDS sodium dodecylsulfate - Tricine N-2-hydroxy-1,1-bis(hydroxymethyl)ethylglycine  相似文献   

8.
The present study compares the binding and inhibitory activity of two photosystem II inhibitors: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron [DCMU]) and 2-chloro-4-(ethylamine)-6-(isopropyl amine)-S-triazene (atrazine). Chloroplasts isolated from naturally occurring triazine-susceptible and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.) showed the following characteristics. (a) Diuron strongly inhibited photosynthetic electron transport from H2O to 2,6-dichlorophenolindophenol in both biotypes. Strong inhibition by atrazine was observed only with the susceptible chloroplasts. (b) Hill plots of electron transport inhibition data indicate a noncooperative binding of one inhibitor molecule at the site of action for both diuron and atrazine. (c) Susceptible chloroplasts show a strong diuron and atrazine binding (14C-radiolabel assays) with binding constants (K) of 1.4 × 10−8 molar and 4 × 10−8 molar, respectively. In the resistant chloroplasts the diuron binding was slightly decreased (K = 5 × 10−8 molar), whereas no specific atrazine binding was detected. (d) In susceptible chloroplasts, competitive binding between radioactively labeled diuron and non-labeled atrazine was observed. This competition was absent in the resistant chloroplasts.  相似文献   

9.
Summary A mutant cell line that shows high resistance to the photosynthesis-inhibiting herbicide atrazine was selected from cultured photomixotrophic Nicotiana tabacum cv. Samsun NN cells by repeated exposure to toxic levels of the herbicide. This resistance was confirmed by measurements of Hill reaction activity in isolated thylakoid membranes. Nucleotide sequencing revealed that the resistant cell line had a point mutation in its chloroplast psbA gene. The 264th codon, AGT (serine) was changed to ACT (threonine) in this mutant. This new type of mutation also conferred moderate cross-resistance to diuron and subsequently was stable in the absence of continued selection pressure.  相似文献   

10.
Acetohydroxyacid synthase (AHAS) (acetolactate synthase, EC ) catalyzes the first step in branched-chain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides. These compounds are potent and selective inhibitors, but their binding site on AHAS has not been elucidated. Here we report the 2.8 A resolution crystal structure of yeast AHAS in complex with a sulfonylurea herbicide, chlorimuron ethyl. The inhibitor, which has a K(i) of 3.3 nm, blocks access to the active site and contacts multiple residues where mutation results in herbicide resistance. The structure provides a starting point for the rational design of further herbicidal compounds.  相似文献   

11.
Many herbicides inhibit the photosynthetic electron transfer in photosystem II by binding to the polypeptide D1. A point mutation in the chloroplast gene psbA, which leads to a change of the amino acid residue 264 of D1 from serine to glycine, is responsible for atrazine resistance in higher plants. We have changed serine 264 to glycine in Synechococcus PCC7942 and compared its phenotype to a mutant with a serine to alanine shift in the same position. The results show that glycine at position 264 in D1 gives rise to a similar phenotype in cyanobacteria and in higher plants, indicating a similar structure of the binding site for herbicides and for the quinone QB in the two systems. A possible mode of binding of phenyl-urea herbicides to D1 is predicted from the difference in herbicidal cross-resistance between glycine and alanine substitutions of serine 264.Abbreviations DCPIP 2,6-dichlorophenolindophenol - I50 concentration of herbicide giving 50% inhibition - Kb binding constant - kb kilobase - MES 2(N-morpholino)ethanesulfonic acid - PS II photosystem II  相似文献   

12.
G Ajlani  I Meyer  C Vernotte  C Astier 《FEBS letters》1989,246(1-2):207-210
A Synechocytis 6714 mutant resistant to the phenol-type herbicide ioxynil was isolated and characterized. Sensitivity to DCMU and atrazine was tf measured in whole cells and isolated thylakoids. The mutant presents the same sensitivity to atrazine as the wild type and a slightly increased sensitivity to DCMU. A point mutation has been found at codon 266 in the psbAI coding locus (AAC to ACC) resulting in an amino acid change from asparagine to threonine in the D1 protein.  相似文献   

13.
Six isolates of the purple non-sulfur bacteria, which upon primary isolation were naturally resistant to the herbicide atrazine, were characterized with respect to their taxonomic identity and the mechanism of their resistance. On the basis of electron microscopy, photopigment analysis, and other criteria, they were identified as strains of Rhodopseudomonas acidophila, Rhodopseudomonas palustris, or Rhodocyclus gelatinosus. These isolates exhibited degrees of atrazine resistance which ranged from 1.5 to about 4 times greater than that of cognate reference strains (American Type Culture Collection) tested. Furthermore, all of the reference strains tested were more intrinsically resistant to atrazine than was Rhodobacter sphaeroides. No unique plasmids which might encode for herbicide degradation or inactivation were found in these isolates. Resistance to the herbicide in these isolates was not the result of diminished binding of the herbicide to the L subunit of the bacterial reaction center. Differences in herbicide resistance among the various species of this group may be the result of compositional and chemical differences in the individual reaction centers. However, the increase in atrazine resistance for the isolates characterized in this study probably occurs by undefined mechanisms and not necessarily by changes in the binding of the herbicide to the L subunit of the photosynthetic reaction center.  相似文献   

14.
15.
A DCMU* (diuron)-resistant algal mutant was selected and characterized. Chlorophyll content, growth, and photosystem-I activity are as in the wild-type. Growth in liquid medium with 3 M DCMU present is half of the control. Apparently only the herbicide-binding site is affected within the redox chain. In contrast to the wild-type, trypsin treatment of isolated chloroplast material completely abolishes photosynthetic electron transport inhibition by DCMU or atrazine.DCMU resistance of chloroplasts is accompanies by tolerance to triazinones and phenylpyridazinones, but not to symmetric triazines. Sensitivity to diphenylethers, DBMIB or o-phenanthroline is not altered.Data on this algal mutant combined with those from triazine-resistant mutants of higher plants give direct evidence of overlapping binding sites at a (hypothetical) binding protein located at the reducing side of photosytem II.  相似文献   

16.
Roles of conserved methionine residues in tobacco acetolactate synthase   总被引:2,自引:0,他引:2  
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. The conserved methionine residues of ALS from plants were identified by multiple sequence alignment using ClustalW. The alignment of 17 ALS sequences from plants revealed 149 identical residues, seven of which were methionine residues. The roles of three well-conserved methionine residues (M350, M512, and M569) in tobacco ALS were determined using site-directed mutagenesis. The mutation of M350V, M512V, and M569V inactivated the enzyme and abolished the binding affinity for cofactor FAD. Nevertheless, the secondary structure of each of the mutants determined by CD spectrum was not affected significantly by the mutation. Both M350C and M569C mutants were strongly resistant to three classes of herbicides, Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine), while M512C mutant did not show a significant resistance to the herbicides. The mutant M350C was more sensitive to pH change, while the mutant M569C showed a profile for pH dependence activity similar to that of wild type. These results suggest that M512 residue is likely located at or near the active site, and that M350 and M569 residues are probably located at the overlapping region between the active site and a common herbicide binding site.  相似文献   

17.
Photosystem II particles have been prepared from spinach and Chlamydomonas reinhardii CW 15 thylakoids. Photosynthetic electron transport in these particles is inhibited by phenolic compounds like dinoseb, but not by atrazine and diuron. The labeling patterns obtained by photoaffinity labels derived from either atrazine (azido-atrazine) or the phenolic herbicide dinoseb (azido-dinoseb) were compared in photosystem II particles and thylakoids. Whereas azido-atrazine in thylakoids of spinach as well as of Chlamydomonas labels a 32-kilodalton peptide, this label does not react in photosystem II particle preparations. Azido-dinoseb, however, labels both the thylakoid membranes and the particles, predominantly polypeptides in the 40-53 kilodalton molecular weight region. Since the latter polypeptides are probably part of the reaction center of photosystem II, it is suggested that phenolic compounds have their inhibition site within the reaction center complex. This indicates that the atrazine-binding 32-kilodalton peptide is either absent or functionally inactive in photosystem II particles, whereas the phenol inhibitor-binding peptides are not.  相似文献   

18.
The molecular interactions resulting in specific binding of trans-acting factors to distinct cis-acting elements is not well understood. Here we report our attempt to understand the involvement of distinct amino acid residues of the basic domain of cAMP-responsive element-binding protein (delta CREB) in the determination of binding toward the cAMP-responsive element (CRE). Using in vitro mutagenesis, we constructed site-directed mutants of distinct amino acid residues within the DNA contact region of delta CREB. The activities of the mutant proteins were analyzed by gel retardation, methylation interference, and CRE competition analyses. We demonstrate that a single lysine to glutamine substitution at positions 289 and 291 of delta CREB alters the methylation interference pattern of the mutant protein for the CRE site. Additional mutants constructed at these positions demonstrate that only identical basic residues at both positions 289 and 291 of delta CREB can restore the wild type methylation interference pattern of the mutant delta CREB protein for the CRE site. These observations point to the importance of the lysine residues at positions 289 and 291 in the process of CRE binding. In addition, this observation suggests that the symmetrical nature of the CRE site is reflected in the DNA contact region of the protein.  相似文献   

19.
The specificities of four monoclonal antibodies rho 1D4, 1C5, 3A6, and 3D6 prepared by immunization of rod outer segments containing rhodopsin have been defined using synthetic peptides. All of these antibodies interact within the 18 residues at the COOH terminus of rhodopsin and recognize linear antigenic determinants of 4-11 residues. Twenty-seven synthetic peptide analogs of varying lengths of native sequence or containing single amino acid substitutions at each position of the COOH-terminal 18 residues have provided some insight into the mechanism of antigen-antibody binding. Our results clearly demonstrate that antibodies can be highly specific at key positions as shown by the loss of binding on single amino acid substitutions in the binding site. In contrast single amino acid substitutions at other positions in the binding site only affect affinity for some antibodies. Ionic interactions can dominate immunogenic determinants. Immunogenic determinants are not restricted to highly charged hydrophilic regions on the surface of a protein and may be dominated by hydrophobic interactions. Although certain side chains can dominate the interaction of the antigen with antibody, our results are in agreement with the interpretation that the free energies of all the contact points are additive and a certain free energy must be present to achieve binding. Antibodies with different specificities directed to the same region of the protein antigen can be produced in an immune response. Peptide antigens representing regions of a protein antigen bind best to the anti-protein antibody when the sequence is shortened to contain only those residues binding to the specificity site in the antibody. Cross-reactivity between protein antigens can be explained by conservation of the critical residues in the combining site.  相似文献   

20.
Previously, we localized the beta2 interacting portion of the catalytic subunit (alpha) of DNA polymerase III to the C-terminal half, downstream of the polymerase active site. Since then, two different beta2 binding sites within this region have been proposed. An internal site includes amino acid residues 920-924 (QADMF) and an extreme C-terminal site includes amino acid residues 1154-1159 (QVELEF). To permit determination of their relative contributions, we made mutations in both sites and evaluated the biochemical, genetic, and protein binding properties of the mutant alpha subunits. All purified mutant alpha subunits retained near wild-type polymerase function, which was measured in non-processive gap-filling assays. Mutations in the internal site abolished the ability of mutant alpha subunits to participate in processive synthesis. Replacement of the five-residue internal sequence with AAAKK eliminated detectable binding to beta2. In addition, mutation of residues required for beta2 binding abolished the ability of the resulting polymerase to participate in chromosomal replication in vivo. In contrast, mutations in the C-terminal site exhibited near wild-type phenotypes. alpha Subunits with the C-terminal site completely removed could participate in processive DNA replication, could bind beta2, and, if induced to high level expression, could complement a temperature-sensitive conditional lethal dnaE mutation. C-terminal defects that only partially complemented correlated with a defect in binding to tau, not beta2. A C-terminal deletion only reduced beta2 binding fourfold; tau binding was decreased ca 400-fold. The context in which the beta2 binding site was presented made an enormous difference. Replacement of the internal site with a consensus beta2 binding sequence increased the affinity of the resulting alpha for beta2 over 100-fold, whereas the same modification at the C-terminal site did not significantly increase binding. The implications of multiple interactions between a replicase and its processivity factor, including applications to polymerase cycling and interchange with other polymerases and factors at the replication fork, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号