首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Ascorbic acid (AH2) is a potential scavenger of superoxide radical and singlet oxygen. In the guinea pig, marginal AH2 deficiency results in intracellular oxidative damage in the cardiac tissue as evidenced by lipid peroxidation, formation of fluorescent pigment and loss of structural integrity of the microsomal membranes. The oxidative damage does not occur due to lack of enzymatic scavengers of reactive oxygen species such as superoxide dismutase, catalase and glutathione peroxidase. Also, glutathione transferase activity is not decreased in AH2 deficiency. Lipid peroxidation, fluorescent pigment formation and protein modification disappear after AH2 therapy. These results, if extra-polated to human beings, would indicate that chronic subclinical AH2 deficiency may result in progressive oxidative damage which in the long run may lead to permanent degenerative diseases in the heart.  相似文献   

2.
Factors affecting the balance between pro- and antioxidant effects of ascorbic acid and glutathione were studied in soybean phosphatidylcholine liposomes challenged with Fe2+/H2O2. Effective antioxidant protection by alpha-tocopherol appeared to be due to efficient reaction with lipid oxy-radicals in the bilayer rather than to interception of initiating oxygen radicals. At concentrations above a threshold level of approximately 0.2 mol % (based on phospholipid content), alpha-tocopherol completely suppressed lipid oxy-radical propagation, which was measured as malondialdehyde production. Both ascorbic acid and glutathione, alone or in combination, enhanced lipid oxy-radical propagation. Alpha-Tocopherol, incorporated into liposomes at concentrations above its threshold protective level, reversed the pro-oxidant effects of 0.1-1.0 mM ascorbic acid but not those of glutathione. Ascorbic acid also prevented alpha-tocopherol depletion. The combination of ascorbic acid and subthreshold levels of alpha-tocopherol only temporarily suppressed lipid oxy-radical propagation and did not maintain the alpha-tocopherol level. Glutathione antagonized the antioxidant action of the alpha-tocopherol/ascorbic acid combination regardless of alpha-tocopherol concentration. These observations indicate that membrane alpha-tocopherol status can control the balance between pro- and antioxidant effects of ascorbic acid. The data also provide the most direct evidence to date that ascorbic acid interacts directly with components of the phospholipid bilayer.  相似文献   

3.
Malondialdehyde (MDA) formation in mouse liver homogenates was measured in the presence of various glutathione depletors (5 mmol/l). After a lag phase of 90 min, the MDA formation increased from 1.25 nmol/mg protein to 14.5 nmol/mg in the presence of diethyl maleate (DEM), to 10.5 with diethyl fumarate (DEF) and to 4 with cyclohexenon by 150 min. It remained at 1.25 nmol/mg with phorone and in the control. On the other hand, glutathione (GSH) dropped from 55 nmol/mg to 50 nmol/mg in the control to, < 1 with DEM, to 46 with DEF, to 3 with cyclohexenon and to 7 with phorone. The data show that the potency to deplete GSH is not related to MDA production in this system. DEM stimulated in vitro ethane evolution in a concentration-dependent manner and was strongly inhibited by SKF 525A. From type I binding spectra to microsomal pigments the following spectroscopic binding constants were determined: 2.5 mmol/l for phorone, 1.2 mmol/l for cyclohexenon, 0.5 mmol/l for DEM and 0.3 mmol/l for DEF. In isolated mouse liver microsomes NADPH-cytochrome P-450 reductase and NADH-cytochrome b5 reductase activity were unaffected by the presence of DEM, whereas ethoxycoumarin dealkylation was inhibited. Following in vivo pretreatment, hepatic microsomal electron flow as determined in vitro was augmented in the presence of depleting as well as non-depleting agents, accompanied by a shift from O2 to H2O2 production. It is concluded that it is not the absence of GSH which causes lipid peroxidation after chemically-induced GSH depletion but rather the interaction of the chemicals with the microsomal monoxygenase system.  相似文献   

4.
beta-Carotene, alpha-tocopherol, and ascorbic acid were tested for their ability to inhibit, enhance, or react synergistically with O(2) (15, 150, 760 torr) and, 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH) or 1,1'-azobis (cyclohexane-carbonitrile) (ACCN) in isolated rat liver microsomes. beta-Carotene did not protect against lipid peroxidation, i.e., malondialdehyde (MDA) formation, in microsomal samples incubated at 37 degrees C with aqueous soluble AAPH at all added beta-carotene concentrations and oxygen tensions. More MDA (16%, p < 0.001) was produced at 15 torr of O(2,) and 160 nmol/mg protein of beta-carotene compared to respective vehicle control. Individually, alpha-tocopherol and ascorbic acid exhibited antioxidant protection (ascorbic acid &z.Gt; alpha-tocopherol); however, a mixture of both compounds was no more protective than ascorbic acid alone. beta-Carotene demonstrated a concentration-dependent antioxidant affect at 15 torr O(2) (p < 0.01); but a prooxidant effect at higher O(2) at 150 and 760 torr (>57%, p < 0.001) by lipid-soluble ACCN. alpha-Tocopherol exhibited concentration-dependent inhibitory effects on microsomal MDA formation at all oxygen tensions, but was most effective under 150 torr. Ascorbic acid demonstrated a concentration-dependent antioxidant effect only at 150 torr. ACCN-induced lipid peroxidation was no greater for the combination of the three compounds than ascorbic acid added alone. Thus, antioxidant or prooxidant activities for beta-carotene, alpha-tocopherol, and ascorbic acid in microsomal suspensions are related to O(2) tension, solubility, antioxidant concentrations and are governed by complex interactions. Differences between AAPH- and ACCN-induced lipid peroxidation are related to differences in lipid solubility.  相似文献   

5.
Simultaneous addition of ascorbic acid and organic hydroperoxides to rat liver microsomes resulted in enhanced lipid peroxidation (approximately threefold) relative to incubation of organic hydroperoxides with microsomes alone. No lipid peroxidation was evident in incubations of ascorbate alone with microsomes. The stimulatory effect of ascorbate on linoleic acid hydroperoxide (LAHP)-dependent peroxidation was evident at all times whereas stimulation of cumene hydroperoxide (CHP)-dependent peroxidation occurred after a lag phase of up to 20 min. EDTA did not inhibit CHP-dependent lipid peroxidation but completely abolished ascorbate enhancement of lipid peroxidation. Likewise, EDTA did not significantly inhibit peroxidation by LAHP but dramatically reduced ascorbate enhancement of lipid peroxidation. The results reveal a synergistic prooxidant effect of ascorbic acid on hydroperoxide-dependent lipid peroxidation. The inhibitory effect of EDTA on enhanced peroxidation suggests a possible role for endogenous metals mobilized by hydroperoxide-dependent oxidations of microsomal components.  相似文献   

6.
Effects of feeding sucrose rich diet supplemented with and without the insulinmimetic agent vanadate for a period of six weeks were studied in rats. Sucrose diet caused hypertriglyceridemia (140% increase), hyperinsulinemia (120% increase) and significant elevations in the levels of glucose (p<0.001) and cholesterol (p<0.05) in plasma as compared to control starch fed rats. Activities of hepatic lipogenic enzymes, ATP-citrate lyase, glucose 6-phosphate dehydrogenase and malic enzyme increased by 100–150% as a result of sucrose feeding. However, glycogen content and the activities of glycogen synthase and phosphorylase in liver remained unaltered in these animals. The plasma levels of triacylglycerols and insulin in the rats fed on vanadate supplemented sucrose diet were 65% and 85% less, respectively as compared to rats on sucrose diet without vanadate. The concentrations of glucose and cholesterol in plasma and the activities of lipogenic enzymes in liver did not show any elevation in sucrose fed rats when supplemented with vanadate. These data indicate that the sucrose diet-induced metabolic aberrations can be prevented by the insulin-mimetic agent, vanadate.  相似文献   

7.
Reduced glutathione (GSH) delays microsomal lipid peroxidation via the reduction of vitamin E radicals, which is catalyzed by a free radical reductase (Haenen, G.R.M.M. et al. (1987) Arch. Biochem. Biophys. 259, 449-456). Lipoic acid exerts its therapeutic effect in pathologies in which free radicals are involved. We investigated the interplay between lipoic acid and glutathione in microsomal Fe2+ (10 microM)/ascorbate (0.2 mM)-induced lipid peroxidation. Neither reduced nor oxidized lipoic acid (0.5 mM) displayed protection against microsomal lipid peroxidation, measured as thiobarbituric acid-reactive material. Reduced lipoic acid even had a pro-oxidant activity, which is probably due to reduction of Fe3+. Notably, protection against lipid peroxidation was afforded by the combination of oxidized glutathione (GSSG) and reduced lipoic acid. It is shown that this effect can be ascribed completely to reduction of GSSG to GSH by reduced lipoic acid. This may provide a rationale for the therapeutic effectiveness of lipoic acid.  相似文献   

8.
ω6- and ω3-unsaturated lipid hydroperoxides decompose to yield pentane and ethane, respectively. Alloxan toxicity was studied in rats in relation to pentane and ethane produced during lipid peroxidation induced by intraperitoneal injection of 20 mg of alloxan/100 g body wt. Fifteen minutes after injection, vitamin E-deficient rats exhaled 102- and 11.2-fold more pentane and ethane, respectively, than prior to injection. Injection of 75 mg ascorbic acid/100 g body wt 30 min prior to alloxan treatment prolonged the time over which peroxidation occurred and all vitamin E-deficient rats died before 4 h. Vitamin E-deficient rats injected with 100 mg of the radical scavenger mannitol/ 100 g body wt 30 min prior to alloxan treatment were completely protected against lipid peroxidation, and none of the rats died by 4 h. Rats fed 40 iu dl-α-tocopherol acetate/kg diet or injected with 100 mg dl-α-tocopherol/100 g body wt were either totally protected against alloxan and alloxan-ascorbic acid-induced peroxidation or were only slightly affected as shown by very low-level pentane and ethane production. Thiobarbituric acid reactants in plasma, liver and pancreas 4 h after alloxan treatment reflected the prooxidant nature of ascorbic acid and alloxan, the vitamin E status of the rats and the protective effect of mannitol. Plasma glucose levels 4 h after alloxan injection were lowest in vitamin E-injected rats and highest in vitamin E-deficient rats. Only in vitamin E-deficient rats were both lipid peroxidation and significantly elevated plasma glucose levels observed by 4 h post-alloxan treatment.  相似文献   

9.
10.
It is well known that lipid peroxidation may be initiated or exaggerated by conditions leading to hepatic GSH depletion or altered GSH/GSSG ratio. In our study we evaluated the effects of GSH administration on hepatic, bile and plasma GSH, GSSG and MDA in rats depleted of the tripeptide by a prolonged. fasting. An exteriorized biliary-duodenal fistula was established and GSH or saline solution was administered i.p. for a period of 6h. Rats treated with GSH exhibited an increased GSH and decreased GSSG biliary excretion. Whereas in control rats an opposite pattern was observed, namely enhanced GSSG and decreased GSH biliary excretion. While hepatic GSH and GSSG concentrations were comparable in the two groups, a significant increase in liver and plasma MDA production was found in controls compared to GSH treated rats. Our data suggest a protective role of GSH against the production of lipoperoxidation as evidenced by the decrease of hepatic, biliary and plasma MDA levels and by a decreased percentage of biliary GSSG. In addition, the significant increase of biliary GSH excretion, observed in rats treated with GSH compared to controls, may be due to an increased supply of the tripeptide which is known to be preferentially excreted into bile in the reduced form.  相似文献   

11.
Studies were done to evaluate the role of alpha-tocopherol in modulating the effects of ascorbic acid (AA) on lipid peroxidation (LP) by adrenocortical mitochondria. In control mitochondria from the inner (zona reticularis) or outer (zona fasciculata plus zona glomerulosa) zones of the guinea pig adrenal cortex, subphysiological concentrations of AA stimulated LP but higher levels had little or no effect. However, after depletion of adrenal tocopherol, even physiological concentrations of AA exerted prooxidant effects, stimulating LP. To assess the antioxidant potency of AA, its effects to inhibit ferrous ion (Fe2+)-induced LP were determined. Mitochondria from the outer zone contained far more alpha-tocopherol than those from the inner zone and were more sensitive to the antioxidant effects of AA. After tocopherol depletion, the antioxidant potency of AA in outer zone mitochondria decreased, but there was little change in the inner zone. The results indicate that the actions of AA are determined in part by mitochondrial tocopherol content, and, as a result, vary in the different zones of the adrenal cortex.  相似文献   

12.
The transition from reversible to permanent wilting, in whole tomato seedlings (Lycopersicon esculentum Mill. cv. M82) following severe salt-stress by root exposure to 300 mM NaCl, was investigated. Salinized seedlings wilted rapidly but recovered if returned to non-saline nutrient solution within 6 h. However, after 9 h of salt-treatment 100% of the seedlings remained wilted and died. Remarkably, the addition of an anti-oxidant (0.5 mM ascorbic acid) to the root medium, prior to and during salt-treatment for 9 h, facilitated the subsequent recovery and long-term survival of c. 50% of the wilted seedlings. Other organic solutes without known anti-oxidant activity were not effective. Salt-stress increased the accumulation in roots, stems and leaves, of lipid peroxidation products produced by interactions with damaging active oxygen species. Additional ascorbic acid partially inhibited this response but did not significantly reduce sodium uptake or plasma membrane leakiness.  相似文献   

13.
In this experiment, we examine the functional property of carotenoids; beta-cryptoxanthin (Cry), zeaxanthin (Zea), beta-carotene (Car)) and ascorbic acid (AsA). The accumulation amounts of Cry, Zea and Car in HepG2 cells cultured in the high concentration medium were larger than that in a low concentration. Further those accumulation amounts in long incubation time within 24 hours were greater than that in a shorter time. When the added carotenoid concentration, with or without hydrogen peroxide, increased from 0 to 5 microM in the culture medium, the thiobarbituric acid reaction substance (TBARS) values in the HepG2 cells decreased significantly (p < 0.05). The decrease of TBARS values shows the antioxidative property of the carotenoids. When AsA and Tocopherol(Toc) were added to the medium from 0 to 20 microM, the TBARS values, with or without hydrogen peroxide, decreased significantly with increasing concentrations of AsA and Toc respectively (p < 0.05). The decreased amount of TBARS in 5 microM Cry compared with control(0 microM) was the largest among 6 antioxidants (Cry, Car, Zea, Retinol(Ret), AsA, Toc) used in this experiment.  相似文献   

14.
15.
16.
In this paper we demonstrate that ascorbic acid specifically prevents NADPH-initiated cytochrome P450 (P450)-mediated microsomal lipid peroxidation in the absence of free iron. Lipid peroxidation has been evidenced by the formations of conjugated dienes, lipid hydroperoxide and malondialdehyde. Other scavengers of reactive oxygen species including superoxide dismutase, catalase, glutathione, -tocopherol, uric acid, thiourea, mannitol, histidine, -carotene and probucol are ineffective to prevent the NADPH-initiated P450-mediated free iron-independent microsomal lipid peroxidation. Using a reconstituted system comprised of purified NADPH-P450 reductase, P450 and isolated microsomal lipid or pure L--phosphatidylcholine diarachidoyl, a mechanism has been proposed for the iron-independent microsomal lipid peroxidation and its prevention by ascorbic acid. It is proposed that the perferryl moiety P450 Fe3+. O2 initiates lipid peroxidation by abstracting methylene hydrogen from polyunsaturated lipid to form lipid radical, which then combines with oxygen to produce the chain propagating peroxyl radical for subsequent formation of lipid peroxides. Apparently, ascorbic acid prevents initiation of lipid peroxidation by interacting with P450 Fe3+. O2. (Mol Cell Biochem 166: 35-44, 1997)  相似文献   

17.
18.
Abstract

Background: Ursodeoxycholic acid (UDCA) may slow progression in primary biliary cirrhosis (PBC), but its effect on survival is controversial. We have previously demonstrated that oxidant stress, with severely depressed plasma glutathione, is a feature of untreated PBC; this study examines the effect of UDCA on lipid peroxidation, antioxidant status and associated processes.

Patients and Methods: Markers of lipid peroxidation, antioxidant status, hepatic fibrogenesis, inflammation, cholestasis and synthetic function were measured at 0, 3, 6, 9 and 12 months in blood and urine from 35 PBC patients receiving UDCA.

Results: Plasma glutathione, reflecting intrahepatic levels, climbed steadily on UDCA; although still subnormal, the median value at 12 months was 2.4-fold higher than the untreated level. Liver enzyme markers and C-reactive protein also improved, whilst PIIINP improved steadily, but the change did not attain statistical significance. Serum bilirubin remained unchanged and total antioxidant capacity, albumin and vitamin E decreased after 12 months' UDCA treatment. 8-Isoprostane increased and malondialdehyde was unchanged.

Conclusions: UDCA treatment partially corrected plasma glutathione status and some other biomarkers greatly improved, but lipid peroxidation was not reduced. UDCA may, therefore, require supplementation with glutathione precursors and/or antioxidant cocktails to reduce oxidant stress and thus delay disease progression to cirrhosis.  相似文献   

19.
To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.  相似文献   

20.
The effect ofl-ascorbic acid on the biosynthesis of aflatoxin inAspergillus parasiticus was studied. Ascorbic acid at lower concentrations did not inhibit the growth of fungus but markedly induced aflatoxin biosynthesis. At a concentration of 1000 ppm of ascorbic acid, 4.8-fold higher levels of aflatoxin were detected. Copper did not enhance the induction of toxin synthesis by ascorbic acid when added to the growth medium. Ascorbic acid at 1000 ppm was also found to induce aflatoxin synthesis in resting mycelia. Chloroform (1% vol/vol) was found to induce aflatoxin synthesis under similar conditions. Ascorbic acid in the presence of ferrous ion can cause lipid peroxidation, which in turn is responsible for the induction of aflatoxin synthesis. During the induction of aflatoxin synthesis by ascorbic acid, the uptake of carbon source (acetate) was not affected. This observation suggests that on ascorbic acid treatment a precursor or an intermediate of aflatoxin biosynthesis is synthesized in vivo and is responsible for the higher levels of toxin without increasing the uptake of acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号