共查询到14条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
Graham Pawelec Markus Reutter Martin Owsianowsky Arnika Rehbein Friedrich W. Busch 《Cancer immunology, immunotherapy : CII》1991,33(1):54-60
Summary T cell clones derived from a chronic myelogenous leukaemia (CML) patient during interferon (IFN, Wellferon) biotherapy preferentially lysed autologous rather than allogeneic CML target cells in an apparently MHC-unrestricted fashion, but also lysed bone marrow cells from certain normal donors regardless of whether or not they shared HLA antigens with the patient. Although T cell clones inhibited both CML and normal bone marrow in the colony-forming assay, they blocked proliferation of CML cells more efficiently than bone marrow cells. This inhibitory effect was mediated at least in part by the tumour necrosis factor (TNF) and IFN secreted by the clones. Antisera to these cytokines partially prevented inhibition. Involvement of additional factors is also suggested in blocking CML cell proliferation because this was not 100% inhibited even by a combination of TNF and IFN. In addition, most clones failed strongly to block the proliferation of normal bone marrow cells, which were susceptible to inhibition by these cytokines.This work was supported in part by the Deutsche Forschungsgemeinschaft (SFB 120) 相似文献
5.
Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells 总被引:7,自引:0,他引:7
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms. 相似文献
6.
7.
8.
9.
10.
11.
Parisi S D'Andrea D Lago CT Adamson ED Persico MG Minchiotti G 《The Journal of cell biology》2003,163(2):303-314
The molecular mechanisms controlling inductive events leading to the specification and terminal differentiation of cardiomyocytes are still largely unknown. We have investigated the role of Cripto, an EGF-CFC factor, in the earliest stages of cardiomyogenesis. We find that both the timing of initiation and the duration of Cripto signaling are crucial for priming differentiation of embryonic stem (ES) cells into cardiomyocytes, indicating that Cripto acts early to determine the cardiac fate. Furthermore, we show that failure to activate Cripto signaling in this early window of time results in a direct conversion of ES cells into a neural fate. Moreover, the induction of Cripto activates the Smad2 pathway, and overexpression of activated forms of type I receptor ActRIB compensates for the lack of Cripto signaling in promoting cardiomyogenesis. Finally, we show that Nodal antagonists inhibit Cripto-regulated cardiomyocyte induction and differentiation in ES cells. All together our findings provide evidence for a novel role of the Nodal/Cripto/Alk4 pathway in this process. 相似文献
12.
Sara Cruciani Sara Santaniello rea Montella Carlo Ventura Margherita Maioli 《World journal of stem cells》2019,11(8):464-475
Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. In vitro manipulation of these cells is focused on understanding stem cell behavior, proliferation and pluripotency. Latest advances in the field of stem cells concern epigenetics and its role in maintaining self-renewal and differentiation capabilities. Chemical and physical stimuli can modulate cell commitment, acting on gene expression of Oct-4, Sox-2 and Nanog,the main stemness markers, and tissue-lineage specific genes. This activation or repression is related to the activity of chromatin-remodeling factors and epigenetic regulators, new targets of many cell therapies. The aim of this review is to afford a view of the current state of in vitro and in vivo stem cell applications,highlighting the strategies used to influence stem cell commitment for current and future cell therapies. Identifying the molecular mechanisms controlling stem cell fate could open up novel strategies for tissue repairing processes and other clinical applications. 相似文献
13.
14.
Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics. 相似文献