首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis.The processis regulated by NSC niche including neighbor cells such as vascular and glial cells.Since both vascular and glial cellssecrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF),we assessed the effect ofVEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonicstem cells.VEGF alone did not have any significant effect.When bFGF was added,however,VEGF stimulated NSCproliferation in a dose-dependent manner,and this stimulation was inhibited by ZM323881,a VEGF receptor (Flk-1)-specific inhibitor.Interestingly,ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF,suggestingthat VEGF autocrine plays a role in the proliferation of NSCs.The stimulatory effect of VEGF on NSC proliferationdepends on bFGF,which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphoryla-tion of ERK1/2.Collectively,this study may provide insight into the mechanisms by which mieroenvironmental nichesignals regulate NSCs.  相似文献   

2.
This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.  相似文献   

3.
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.  相似文献   

4.
5.
Mitofusin 2 (MFN2) is a regulatory protein participating in mitochondria dynamics, cell proliferation, death, differentiation, and so on. This study aims at revealing the functional role of MFN2 in the pluripotency maintenance and primitive differetiation of embryonic stem cell (ESCs). A dox inducible silencing and routine overexpressing approach was used to downregulate and upregulate MFN2 expression, respectively. We have compared the morphology, cell proliferation, and expression level of pluripotent genes in various groups. We also used directed differentiation methods to test the differentiation capacity of various groups. The Akt signaling pathway was explored by the western blot assay. MFN2 upregulation in ESCs exhibited a typical cell morphology and similar cell proliferation, but decreased pluripotent gene markers. In addition, MFN2 overexpression inhibited ESCs differentiation into the mesendoderm, while MFN2 silencing ESCs exhibited a normal cell morphology, slower cell proliferation and elevated pluripotency markers. For differentiation, MFN2 silencing ESCs exhibited enhanced three germs' differentiation ability. Moreover, the protein levels of phosphorylated Akt308 and Akt473 decreased in MFN2 silenced ESCs, and recovered in the neural differentiation process. When treated with the Akt inhibitor, the neural differentiation capacity of the MFN2 silenced ESCs can reverse to a normal level. Taken together, the data indicated that the appropriate level of MFN2 expression is essential for pluripotency and differentiation capacity in ESCs. The increased neural differentiation ability by MFN2 silencing is strongly related to the Akt signaling pathway.  相似文献   

6.
The prospect of using embryonic stem cell (ESC)‐derived neural progenitors and neurons to treat neurological disorders has led to great interest in defining the conditions that guide the differentiation of ESCs, and more recently induced pluripotent stem cells (iPSCs), into neural stem cells (NSCs) and a variety of neuronal and glial subtypes. Over the past decade, researchers have looked to the embryo to guide these studies, applying what we know about the signaling events that direct neural specification during development. This has led to the design of a number of protocols that successfully promote ESC neurogenesis, terminating with the production of neurons and glia with diverse regional addresses and functional properties. These protocols demonstrate that ESCs undergo neural specification in two, three, and four dimensions, mimicking the cell–cell interactions, patterning, and timing that characterizes the in vivo process. We therefore propose that these in vitro systems can be used to examine the molecular regulation of neural specification. J. Cell. Biochem. 111: 535–542, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
神经干细胞向少突胶质前体细胞的定向分化诱导   总被引:5,自引:0,他引:5  
Fu SL  Hu JG  Li Y  Yin L  Jin JQ  Xu XM  Lu PH 《生理学报》2005,57(2):132-138
本研究采用神经胶质瘤细胞株(B104 neuroblatoma cells,B104 cells)培养上清(B104CM)和碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF),将冷冻复苏的大鼠胚胎脊髓神经干细胞(neural stem cells,NSCs)定向诱导为少突胶质前体细胞(oligodendrocyte precusor cells,OPCs)。形态学和免疫组化的结果显示,诱导后95%以上的细胞具有双极或多极突起的典型OPCs形态,并表达A285和血小板源生长因子受体-α(platelet derived growth factor receptor-α,PDGFR-α等0PCs标志,所有PDGFR-α阳性的OPCs均不表达β-Tublin Ⅲ,其中仅少量细胞表达胶质原纤维酸性蛋白(glia fibrillary acidic protein,GFAP)。在B104CM和bFGF共存的培养条件下,悬浮培养的OPCs可大量增殖形成少突胶质细胞球,该细胞球可通过传代继续扩增,且扩增的OPCs仍能维持其特有的形态和自我增殖的特性。撤去bFGF和B104CM后,OPCs能进一步分化为成熟的少突胶质细胞(oligodendrocytes,OLs)或Ⅱ型星形胶质细胞。实验表明,诱导NSCs产生的OPCs在形态、增殖以及分化格局等方面均与已报道的存在于胚胎脑区的O-2A前体细胞相类似。该培养系统可为实验性细胞移植的研究提供丰富的细胞来源。  相似文献   

8.
9.
10.
11.
Huang X  Zhao T  Zhao H  Xiong L  Liu ZH  Wu LY  Zhu LL  Fan M 《生理学报》2008,60(3):437-441
本文旨在探讨细胞外信号调节激酶(extracellular signal-regulated kinase 1/2, ERK1/2)对小鼠神经干细胞增殖的影响.分离E14.5小鼠皮层神经干细胞,通过Western blot检测神经干细胞增殖过程中磷酸化ERK1/2的表达情况,以及不同浓度PD98059处理对神经干细胞ERK1/2磷酸化及神经球形成的影响,并用CCK-8法检测PD98059对神经干细胞增殖的影响.结果显示:ERK1/2在体外培养的神经下细胞增殖过程中被激活;PD98059显著抑制ERK1/2磷酸化及神经干细胞的成球率,且存在剂量效应依赖关系;加入PD98059后神经干细胞的生长被抑制.以上结果表明,ERK1/2在小鼠神经干细胞增殖中具有重要的作用,阻断ERK1/2信号通路后可抑制神经干细胞的增殖.  相似文献   

12.
With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, human embryonic stem cells (hESCs) hold great promise in human cell therapy. However, there are limited tools for easily identifying and isolating live hESC-derived cells. To track hESC-derived neural progenitor cells (NPCs), we applied homologous recombination to knock-in the mCherry gene into the Nestin locus of hESCs. This facilitated the genetic labeling of Nestin positive neural progenitor cells with mCherry. Our reporter system enables the visualization of neural induction from hESCs both in vitro (embryoid bodies) and in vivo (teratomas). This system also permits the identification of different neural subpopulations based on the intensity of our fluorescent reporter. In this context, a high level of mCherry expression showed enrichment for neural progenitors, while lower mCherry corresponded with more committed neural states. Combination of mCherry high expression with cell surface antigen staining enabled further enrichment of hESC-derived NPCs. These mCherry+NPCs could be expanded in culture and their differentiation resulted in a down-regulation of mCherry consistent with the loss of Nestin expression. Therefore, we have developed a fluorescent reporter system that can be used to trace neural differentiation events of hESCs.  相似文献   

13.
14.
ObjectivesFibroblast growth factor 9 (FGF9) is expressed by somatic cells in the seminiferous tubules, yet little information exists about its role in regulating spermatogonial stem cells (SSCs).Materials and Methods Fgf9 overexpression lentivirus was injected into mouse testes, and PLZF immunostaining was performed to investigate the effect of FGF9 on spermatogonia in vivo. Effect of FGF9 on SSCs was detected by transplanting cultured germ cells into tubules of testes. RNA‐seq of bulk RNA and single cell was performed to explore FGF9 working mechanisms. SB203580 was used to disrupt p38 MAPK pathway. p38 MAPK protein expression was detected by Western blot and qPCR was performed to determine different gene expression. Small interfering RNA (siRNA) was used to knock down Etv5 gene expression in germ cells.ResultsOverexpression of Fgf9 in vivo resulted in arrested spermatogenesis and accumulation of undifferentiated spermatogonia. Exposure of germ cell cultures to FGF9 resulted in larger numbers of SSCs over time. Inhibition of p38 MAPK phosphorylation negated the SSC growth advantage provided by FGF9. Etv5 and Bcl6b gene expressions were enhanced by FGF9 treatment. Gene knockdown of Etv5 disrupted the growth effect of FGF9 in cultured SSCs along with downstream expression of Bcl6b.ConclusionsTaken together, these data indicate that FGF9 is an important regulator of SSC proliferation, operating through p38 MAPK phosphorylation and upregulating Etv5 and Bcl6b in turn.  相似文献   

15.
以小鼠胚胎干细胞(ES)为种子细胞,使用改良的4-/4+ RA方案,诱导小鼠ES细胞在丝素材料上向神经细胞分化,探讨丝素材料对其生长、黏附、分化等情况的影响。将小鼠ES细胞悬浮培养4 d得到的拟胚体(EBs)分别接种到经丝素膜和明胶包被的培养皿上进行诱导,比较不同材料上EBs的贴壁率及向神经元分化的比率。结果表明EBs在明胶和柞蚕丝素蛋白膜(TSF)上贴壁较快,平均贴壁率为90.3%和84.4%,在桑蚕丝素蛋白膜(SF)上贴壁较慢,贴壁率低,仅为38.5%,同时三者神经元的分化比率均能达到40%以上,无明显差异。通过以上实验,我们得出,TSF有望成为小鼠ES细胞向神经细胞分化的支架材料。  相似文献   

16.
17.
Arsenic trioxide (As2O3, diarsenic oxide) has recently been reported to induce apoptosis and inhibit the proliferation of various human cancer cells derived from solid tumors as well as hematopoietic malignancies. In this study, the in vitro effects of As2O3 and tetraasrsenic oxide (As4O6) on cell cycle regulation and basic fibroblast growth factor (bFGF)- or vascular endothelial growth factor (VEGF)-stimulated cell proliferation of human umbilical vein endothelial cells (HUVEC) were investigated. Significant dose-dependent inhibition of cell proliferation was observed when HUVEC were treated with either arsenical compound for 48 h, and flow cytometric analysis revealed that these two arsenical compounds induced cell cycle arrest at the G1 and G2/M phases--the increases in cell population at the G1 and G2/M phase were dominantly observed in As2O3- and As4O6-treated cells, respectively. In both arsenical compounds-treated cells, the protein levels of cyclin A and CDC25C were significantly reduced in a dose-dependent manner, concomitant to the reduced activities of CDK2- and CDC2-associated kinase. In G1-synchronized HUVEC, the arsenical compounds prevented the cell cycle progression from G1 to S phase, which was stimulated by bFGF or VEGF, through the inhibition of growth factor-dependent signaling. These results suggest that arsenical compounds inhibit the proliferation of HUVEC via G1 and G2/M phase arrest of the cell cycle. In addition, these inhibitory effects on bFGF- or VEGF-stimulated cell proliferation suggest antiangiogenic potential of these arsenical compounds.  相似文献   

18.
19.
为探索猕猴神经干细胞分化及特性维持,推进神经干细胞临床应用研究,该实验以绿色荧光蛋白(green fluorescence protein,GFP)为标记探讨猕猴胚胎干细胞向玫瑰花环(rosettes)结构神经干细胞的分化及其碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)和表皮生长因子(epidermal growth factor,EGF)的扩增培养。结果表明:1)建立了稳定高效的猕猴神经干细胞分化体系,在该分化体系下,GFP标记猕猴胚胎干细胞在分化的第12天时,95%以上的细胞分化为神经干细胞;2)分化得到的Rosettes结构神经干细胞经bFGF/EGF扩增后,能够较好地维持其Rosettes结构;3)经bFGF/EGF扩增后的rosettes结构神经干细胞移植到猕猴脑内后能够较好的存活并向神经元分化,即bFGF/EGF扩增培养能较好地维持Rosettes结构的神经干细胞,且移植到猕猴脑内的该细胞亦能够较好地存活并向神经元分化,该结果为神经干细胞应用于临床提供了基础理论依据。  相似文献   

20.
胚胎大鼠脑和脊髓神经干细胞的分离和培养   总被引:11,自引:2,他引:11  
Fu SL  Ma ZW  Yin L  Lu PH  Xu XM 《生理学报》2003,55(3):278-283
研究采用显微解剖、无血清细胞培养和免疫荧光细胞化学染色等实验技术 ,成功地建立了胚胎大鼠脑和脊髓神经干细胞 (NSCs)的分离和培养方法。结果显示 ,( 1)在含成纤维细胞生长因子 2 (FGF 2 )和表皮生长因子(EGF)的无血清培养液中 ,两种来源的NSCs经体外培养 8- 10代后 ,其细胞数呈指数级增加 ,其中脑来源的NSCs数由原代培养时的 1× 10 6 增加至 1× 10 12 ,脊髓来源的NSCs数从 1× 10 6 增加至 1× 10 11。增殖的细胞表达神经上皮干细胞蛋白 (nestin) ;( 2 )在含 1%胎牛血清 (FBS)的培养条件下 ,它们都能被诱导分化为神经元、少突胶质细胞和星型胶质细胞。但其分化比例可随细胞传代次数的增加而改变 ,其中 ,大脑来源的NSCs分化为神经元的比例从第二代 (P2 )的 11 95± 2 5 %下降至第五代 (P5)的 1 97± 1 16% (P <0 0 1) ,而少突胶质细胞的分化比例则基本保持不变 ,这一分化格局同样可在脊髓来源的NSCs中发现。结果表明 ,我们所分离和培养的细胞在体外经多次传代后仍具有很强的增殖能力和多向分化潜能 ,它们都表达nestin ,属于中枢神经系统的干细胞  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号