首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Trophinin is an intrinsic membrane protein expressed in trophectoderm cells of embryos and in uterine epithelial cells. Trophinin potentially mediates apical cell adhesion at human embryo implantation sites through trophinin-trophinin binding in these two cell types. Trophinin-mediated cell adhesion activates trophectoderm cells for invasion, whereas the effect of adhesion on maternal side is not known. We show that addition of GWRQ peptide, a previously established peptide that mimics trophinin-mediated cell adhesion, to human endometrial epithelial cells expressing trophinin induces their apoptosis. FAS involvement was excluded, as GWRQ did not bind to FAS, and FAS knockdown did not alter GWRQ-induced apoptosis. Immunoblotting analyses of protein kinases revealed an elevation of PKC-δ protein in GWRQ-bound endometrial epithelial cells. In the absence of GWRQ, PKC-δ associated with trophinin and remained cytoplasmic, but after GWRQ binding to the trophinin extracellular domain, PKC-δ became tyrosine phosphorylated, dissociated from trophinin and entered the nucleus. In PKC-δ knockdown endometrial cells, GWRQ did not induce apoptosis. These results suggest that trophinin-mediated cell adhesion functions as a molecular switch to induce apoptosis through the PKC-δ pathway in endometrial epithelial cells. Thus, trophinin-mediated induction of apoptosis of endometrial epithelial cells, which function as a barrier to embryo invasion, allows trophoblast invasion of maternal tissue and embryo implantation in humans.Key words: blastocyst, embryo implantation, apoptosis, cell adhesion, signal transduction  相似文献   

4.
It has been reported that phospholipase C-γ1 (PLC-γ1) plays an important protective role in hydrogen peroxide (H2O2)-induced pheochromocytoma (PC) 12 cells death. However, most studies have used high doses of H2O2 and the downstream targets of PLC-γ1 activation remain to be identified. The present study was designed to examine the roles of PLC-γ1 signaling pathway in the apoptosis of PC12 cells induced by low dose of H2O2, as well as the downstream factors involved in this pathway. Low-dose treatment of H2O2 resulted in PLC-γ1 tyrosine phosphorylation in a time-dependent manner and H2O2 killed the PC12 cells by inducing necrosis. In contrast, pretreatment of PCI2 cells with U73122, a specific inhibitor of PLC, markedly increased the percentage of dead cells. The mode of cell death was converted to apoptosis as determined by Hoechst/PI nuclear staining and fluorescence microscopy. Western blot analysis demonstrated that the expression of Bcl-2 protein and the activation of pro-caspase-3 were not significantly affected by low dose of H2O2 alone. However, after pretreatment with U73122, Bcl-2 protein expression was dramatically decreased and the activation of pro-caspase-3 was significantly increased. We concluded that PLC-γ1 plays an important protective role in H2O2-induced PC12 cells death. Bcl-2 and caspase-3 probably participate in the signaling pathway as downstream factors.  相似文献   

5.
It is well documented that a proliferation-inducing ligand (APRIL), a newly found member of tumor necrosis factor superfamily, overexpressed in the majority of malignancies, plays a potential role in the occurrence and development of these tumors. Herein, we demonstrated that APRIL depletion by using RNA interference in human colorectal cancer (CRC) COLO 205 and SW480 cells resulted in cell proliferation inhibition and evoked cell cycle arrest in G0/G1 phase and apoptosis, coupled with decrease in CDK2, Cyclin D1, Bcl-2 expression and an increase of p21 and Bax expression. In addition, the decreased expression of transforming growth factor-β1 (TGF-β1) and p-ERK was also showed in siRNA-APRIL transfected COLO 205 and SW480 cells, whereas the protein expression levels of Smad2/3, p-Smad2/3, and ERK were not significantly changed. Taken together, our results indicate that APRIL depletion induces cell cycle arrest and apoptosis partly through blocking noncanonical TGF-β1/ERK, rather than canonical TGF-β1/Smad2/3, signaling pathway in CRC cells. Moreover, our study highlights APRIL as a potential molecular target for the therapy of CRC.  相似文献   

6.
α-Mangostin is a dietary xanthone that has been shown to have anti-cancer and anti-proliferative properties in various types of human cancer cells. This study investigates the molecular mechanism of the apoptosis-inducing effects of α-mangostin on human hepatocellular carcinoma (HCC) cells. We observed that α-mangostin reduces the viability of HCC cells in a dose- and time-dependent manner. α-Mangostin mediated apoptosis of SK-Hep-1 cells is accompanied by nuclear chromatin condensation and cell cycle arrest in the sub-G1 phases as well as phosphatidylserine exposure. Furthermore, α-mangostin triggered the mitochondrial caspase apoptotic pathway, as indicated by the loss of mitochondrial membrane potential, the release of cytochrome c from mitochondria, and the regulation of B cell lymphoma 2 family member expression. Moreover, α-mangostin inhibited a sustained activation of p38 mitogen-activated protein kinase (MAPK) phosphorylation, and treatment with a p38 MAPK inhibitor enhanced α-mangostin-induced caspase activation and apoptosis in SK-Hep-1 cells. In vivo xenograft mice experiments revealed that α-mangostin significantly reduced tumor growth and weight in mice inoculated with SK-Hep-1 cells. These findings demonstrate that α-mangostin induces mitochondria-mediated apoptosis through inactivation of the p38 MAPK signaling pathway and that α-mangostin inhibits the in vivo tumor growth of SK-Hep-1 xenograft mice.  相似文献   

7.
8.
9.
Inducible resistance to Fas—mediated apoptosis in B cells   总被引:6,自引:0,他引:6  
Rothstein TL 《Cell research》2000,10(4):245-266
Apoptosis produced in B cells through Fas(APO-1,CD95) triggering is regulated by signals derived from other surface receptors:CD40 engagement produces upregulation of Fas expression and marked susceptibility to Fas-induced cell death,whereas antigen receptor engagement,or IL-4R engagement,inhibits Fas killing and in so doing induces a state of Fas-resistance,even in otherwise sensitive,CD40-stimulated targets.Surface immunoglobulin and IL-4R utilize at least partially distinct path ways to produce Fas-resistance that differentially depend on PKC and STAT6,respectively.Further,surface immunoglobulin signaling for inducible Fas-resistance bypasses Btk,requires NF-κB,and entails new macromolecular synthesis.Terminal effectors of B cell Fas-resistance include the known anti-apoptotic gene products,Bcl-XL and FLIP,and a novel anti-apoptotic gene that encodes FAIM (Fas Apoptosis Inhibitory Molecule).faim was identified by differential display and exists in two alternatively spliced forms;faim-S is broadly expressed,but faim-L expression is tissue-specific.The FAIM sequence is highly evolu tionarily conserved,suggesting an important role for this molecule throughout phylogeny.Inducible resistance to Fas killing is hypothesized to protect foreign antigen-specific B cells during potentially hazardous interactions with FasL-bearing T cells,whereas autoreactive B cells fail to become Fas-resistant and are deleted via Fas-dependent cytotoxicity.Inadvertent or aberrant acquisition of Fas-resistance may permit autoreactive B cells to escape Fas deletion,and malignant lymphocytes to impede anti-tumor immunity.  相似文献   

10.
以藏羚羊(Pantholops hodgsonii)及同海拔分布的藏系绵羊(Tibetan Sheep)的心肌组织为材料,提取总RNA,利用逆转录聚合酶链反应(RT-PCR)技术扩增出过氧化物酶体增生物激活受体γ辅激活因子-1α(PGC-1α)的基因编码区cDNA片段,与载体连接构建重组质粒,经转化、扩增培养、鉴定后测序.利用生物信息学方法分析显示,藏羚羊和藏系绵羊的PGC-1α基因编码区长度均为2 349 bp,编码797个氨基酸(GenBank登录号分别为:JF449959和JF449960);与其他脊椎动物PGC-1α基因的核苷酸及氨基酸序列相似性达到90%以上;其包含RNA/DNA结合位点、RNA识别基序(RRM)、与核呼吸因子1( NRF-1)及肌细胞增强因子2C(MEF2C)相互作用的区域、富含丝氨酸/精氨酸的结构域、负调节功能结构域、LXXLL模体以及TPPTTPP和DHDYCQ两个保守序列,14个氨基酸差异性位点位于以上部分功能结构域中;此外,磷酸化位点的预测提示藏羚羊可能存在一个潜在的蛋白激酶G的磷酸化位点(第329位的苏氨酸).本研究成功克隆出了藏羚羊PGC-1α基因的编码区序列,为从能量代谢角度深入探讨藏羚羊适应高原的分子生物学机制提供了新的思路.  相似文献   

11.
12.
Severe side effects and complications such as gastrointestinal and hematological toxicities because of current anticancer drugs are major problems in the clinical management of gastric cancer, which highlights the urgent need for novel effective and less toxic therapeutic approaches. Hispolon, an active polyphenol compound, is known to possess potent antineoplastic and antiviral properties. In this study, we investigated the efficacy of hispolon in human gastric cancer cells and explored the cell death mechanism. Hispolon induced ROS-mediated apoptosis in gastric cancer cells and was more toxic toward gastric cancer cells than toward normal gastric cells, suggesting greater susceptibility of the malignant cells. The mechanism of hispolon-induced apoptosis was that hispolon abrogated the glutathione antioxidant system and caused massive ROS accumulation in gastric cancer cells. Excessive ROS caused oxidative damage to the mitochondrial membranes and impaired the membrane integrity, leading to cytochrome c release, caspase activation, and apoptosis. Furthermore, hispolon potentiated the cytotoxicity of chemotherapeutic agents used in the clinical management of gastric cancer. These results suggest that hispolon could be useful for the treatment of gastric cancer either as a single agent or in combination with other anticancer agents.  相似文献   

13.
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and ?3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway.  相似文献   

14.
As the most common selenium derivative, methylseleninic acid (MSA) has attracted wide attention. Its apoptotic induction ability and the possible molecular mechanism in human bladder cancer (BC) J82 and T24 cells were investigated in the present study. We found that the survival of J82 and T24 cells were inhibited in a dose-dependent manner after MSA treatment. Propidium iodide (PI) staining and Annexin V-fluorescein isothiocyanate/PI double staining clarified that MSA stocked cells at G2/M phase and caused apoptosis in J82 and T24 cells. Further, typical morphological features of apoptotic cells were also observed. Accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential were also detected by dichlorodihydrofluorescein diacetate and Rhodamin123 staining. Meanwhile, pretreatment with N-acetylcysteine, an ROS scavenging agent, found that the apoptosis of BC cells induced by MSA was related to the production of ROS. Western blot analysis results showed that MSA interrupted Bax/Bcl-2 balance, stimulated cytochrome c release into the cytoplasm, activated caspase-9 and caspase-3, and finally induced the apoptosis of the BC cells. These findings demonstrated that MSA was able to induce apoptosis in J82 and T24 cells through ROS-mediated mitochondrial apoptosis.  相似文献   

15.
Chondrosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. (-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to inhibit tumorigenesis and cancer cell growth in animal models. The aim of this study was to elucidate the mechanism of EGCG-induced apoptosis of human chondrosarcoma cells. EGCG induced cell apoptosis in human chondrosarcoma cell lines but not primary chondrocytes. EGCG induced upregulation of Bax and Bak, downregulation of Bcl-2 and Bcl-XL, and dysfunction of mitochondria in chondrosarcoma. We also found that the accumulation of reactive oxygen species (ROS) is a critical mediator in EGCG-induced cell death. EGCG induced apoptosis signal-regulating kinase 1 (ASK1) dephosphorylation and its dissociation from 14-3-3. Treatment of chondrosarcoma cells with EGCG induced p38 and c-jun-NH2-kinase (JNK) phosphorylation. Transfection with ASK1 siRNA or p38 and JNK mutant antagonized the EGCG-induced cell apoptosis. Therefore, EGCG triggered ROS and activated the ASK1-p38/JNK pathway, resulting chondrosarcoma cell death. Importantly, animal studies revealed a dramatic reduction in tumor volume after 24 days of treatment. Thus, EGCG may be a novel anti-cancer agent for the treatment of chondrosarcoma.  相似文献   

16.
Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-l-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.  相似文献   

17.
1,4-Dihydropyridines (1,4-DHPs) are important as a class of heterocyclic compounds that exhibit wide range of biological actions. Many of its derivatives are already characterized as medicinally important drugs and used worldwide. In this study, we have screened some novel Hantzsch 1,4-DHP compounds using both in silico (QSAR and Pharmacophore) and in vitro (cytotoxic screening). 1,4-DHP showed selective cytotoxicity against five human cancerous cell lines; A375, A549, HeLa, HepG2 and SH-SY5Y but limited effect towards normal skin keratinocyte (HaCaT), lung fibroblast (WL-38) and healthy peripheral blood mononuclear cells. In A375 and HepG2 cells, one of the 1,4-DHP derivative (DHP-8) was found to inhibit cell proliferation, and simultaneously increased the apoptotic population as well as mitochondrial membrane depolarization. Furthermore, the mitochondrial signal was triggered with the activation of cleaved Caspase9, Caspase3 and PARP. The treatment with DHP-8 also increased the expression level of SIRT1, subsequently decreasing the level of pAKTser473 and survivin. Reduced pAKTser473 expression led to decrease the phosphorylated inactive form of GSK3βser9 and as a result, proteasomal degradation of Mcl-1 occurred in both the cell lines. Here, we suggest that the apoptotic effect of DHP-8 in A375 and HepG2 cells was mediated by AKT and survivin pathways through SIRT1 activation. The involvement of DHP-8 in SIRT1 activation was further verified by co-treatment of nicotinamide with DHP-8 in both A375 and HepG2 cells. Overall, this study emphasizes the possible potential and therapeutic role of DHP-8 in skin and liver cancer.  相似文献   

18.
19.
Dryofragin is a phloroglucinol derivative extracted from Dryopteris fragrans (L.) Schott. In this study, the anticancer activity of dryofragin on human breast cancer MCF-7 cells was investigated. Dryofragin inhibited the growth of MCF-7 cells in a time and concentration-dependent manner. The cell viability was measured using MTT assay. After treatment with dryofragin for 72, 48 and 24h, the IC(50) values were 27.26, 37.51 and 76.10μM, respectively. Further analyses of DNA fragmentation and Annexin V-PI double-labeling indicated an induction of apoptosis. Dryofragin-treatment MCF-7 cells had a significantly accumulation of reactive oxygen species (ROS), as well as an increased percentage of cells with mitochondrial membrane potential (MMP) disruption. These phenomena were blocked by pretreatment for 2h of MCF-7 cells with the antioxidant compound N-acetyl-l-cysteine (NAC, 5mM). These results speak for the involvement of a ROS-mediated mitochondria-dependent pathway in dryofragin-induced apoptosis. Western blot results showed that dryofragin inhibited Bcl-2 and induced Bax expression which led to an activation of caspases-9 and -3 in the cytosol, and further cleavage of poly ADP-ribose polymerase (PARP) in the nucleus, then induced cell apoptosis. In conclusion, the present study provides evidence that dryofragin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway.  相似文献   

20.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号