共查询到20条相似文献,搜索用时 0 毫秒
1.
Dan Luo Lina Qu Ming Zhong Xinmei Li Han Wang Jiahui Miao 《Bioscience, biotechnology, and biochemistry》2020,84(7):1384-1393
ABSTRACT Seed germination is regulated by light. Phytochromes (Phys) act as red and far-red light photoreceptors to mediate seed germination. However, the mechanism of this process is not well understood. In this study, we found that the Arabidopsis thaliana mutants vascular plant one-zinc finger 1 (voz1) and voz2 showed higher seed germination percentage than wild type when PhyB was inactivated by far-red light. In wild type, VOZ1 and VOZ2 expression were downregulated after seed imbibition, repressed by PhyB, and upregulated by Phytochrome-interacting factor 1 (PIF1), a key negative regulator of seed germination. Red light irradiation and the voz1voz2 mutation caused increased expression of Gibberellin 3-oxidase 1 (GA3ox1), a gibberellin (GA) biosynthetic gene. We also found that VOZ2 is bound directly to the promoter of GA3ox1 in vitro and in vivo. Our findings suggest that VOZs play a negative role in PhyB-mediated seed germination, possibly by directly regulating GA3ox1 expression. 相似文献
2.
Yeast (Saccharomyces cerevisiae) Atg6/Vps30 is required for autophagy and the sorting of vacuolar hydrolases, such as carboxypeptidase Y. In higher eukaryotes, however, roles for ATG6/VPS30 homologs in vesicle sorting have remained obscure. Here, we show that AtATG6, an Arabidopsis (Arabidopsis thaliana) homolog of yeast ATG6/VPS30, restored both autophagy and vacuolar sorting of carboxypeptidase Y in a yeast atg6/vps30 mutant. In Arabidopsis cells, green fluorescent protein-AtAtg6 protein localized to punctate structures and colocalized with AtAtg8, a marker protein of the preautophagosomal structure. Disruption of AtATG6 by T-DNA insertion resulted in male sterility that was confirmed by reciprocal crossing experiments. Microscopic analyses of AtATG6 heterozygous plants (AtATG6/atatg6) crossed with the quartet mutant revealed that AtATG6-deficient pollen developed normally, but did not germinate. Because other atatg mutants are fertile, AtAtg6 likely mediates pollen germination in a manner independent of autophagy. We propose that Arabidopsis Atg6/Vps30 functions not only in autophagy, but also plays a pivotal role in pollen germination. 相似文献
3.
The seed in the mature and dry state is metabolically inactive (quiescent) and is thus able to withstand extreme environmental conditions, such as drought and cold. Germination commences when the dry seed, shed from its parent plant, takes up water (imbibition) and ends when the root emerges through the seed coat. During seedling establishment, the reserves stored in the seed are metabolized, whereas the subsequent vegetative and reproductive growth is supported by photosynthesis. Here, we describe the functional characterization of the PH-START protein AtAPO1 (Arabidopsis thaliana APOSTART1), the putative homologue of PpAPO1 (Poa pratensis APOSTART1) in Arabidopsis thaliana. By using translational fusion of the AtAPO1 promoter to the uiaD gene and in situ hybridization analyses, we show that AtAPO1 is expressed in mature embryo sacs and developing embryos. The functional analysis of two at-apostart mutant alleles suggests that AtAPO1 is involved in the control of seed germination. 相似文献
4.
5.
6.
7.
8.
Arabidopsis AtVPS15 plays essential roles in pollen germination possibly by interacting with AtVPS34
VPS 15 protein is a component of the phosphatidylinositol 3-kinase complex which plays a pivotal role in the development of yeast and mammalian cells.The knowledge about the function of its homologue in plants remains limited.Here we report that AtVPS15, a homologue of yeast VPS15p in Arabidopsis,plays an essential role in pollen germination.Homozygous T-DNA insertion mutants of AtVPS15 could not be obtained from the progenies of self-pollinated heterozygous mutants.Reciprocal crosses between atvpslS mutants and wild-type Arabidopsis revealed that the T-DNA insertion was not able to be transmitted by male gametophytes.DAPI staining, Alexander’s stain and scanning electron microscopic analysis showed that atvpsl5 heterozygous plants produced pollen grains that were morphologically indistinguishable from wild-type pollen,whereas in vitro germination experiments revealed that germination of the pollen grains was defective.GUS staining analysis of transgenic plants expressing the GUS reporter gene driven by the AtVPS15 promoter showed that AtVPSI5 was mainly expressed in pollen grains.Finally,DUALmembrane yeast two-hybrid analysis demonstrated that AtVPS15 might interact directly with AtVPS34.These results suggest that AtVPS15 is very important for pollen germination,possibly through modulation of the activity of PI3-kinase. 相似文献
9.
10.
The role of heterotrimeric G proteins in pollen germination and tube growth was investigated using Arabidopsis thaliana plants in which the gene (GPA) encoding the G-protein a subunit (Galpha) was null or overexpressed. Pollen germination, free cytosolic calcium concentration ([Ca(2+)](cyt)) and Ca(2+) channel activity in the plasma membrane (PM) of pollen cells were investigated. Results showed that, compared with pollen grains of the wild type (ecotype Wassilewskija, ws), in vitro germinated pollen of Galpha null mutants (gpa1-1 and gpa1-2) had lower germination percentages and shorter pollen tubes, while pollen from Galpha overexpression lines (wGalpha and cGalpha) had higher germination percentages and longer pollen tubes. Compared with ws pollen cells, [Ca(2+)](cyt) was lower in gpa1-1 and gpa1-2 and higher in wGalpha and cGalpha. In whole-cell patch clamp recordings, a hyperpolarization-activated Ca(2+)-permeable conductance was identified in the PM of pollen protoplasts. The conductance was suppressed by trivalent cations but insensitive to organic blockers; its permeability to divalent cations was Ba(2+) > Ca(2+) > Mg(2+) > Sr(2+) > Mn(2+). The activity of the Ca(2+)-permeable channel conductance was down-regulated in pollen protoplasts of gpa1-1 and gpa1-2, and up-regulated in wGalpha and cGalpha. The results suggest that Galpha may participate in pollen germination through modulation of the hyperpolarization-activated Ca(2+) channel in the PM of pollen cells. 相似文献
11.
Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana 总被引:1,自引:0,他引:1
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and exert beneficial effects on plant health and development. We are investigating the mechanisms by which PGPR elicit plant growth promotion from the viewpoint of signal transduction pathways within plants. We report here our first study to determine if well-characterized PGPR strains, which previously demonstrated growth promotion of various other plants, also enhance plant growth in Arabidopsis thaliana. Eight different PGPR strains, including Bacillus subtilis GB03, B. amyloliquefaciens IN937a, B. pumilus SE-34, B. pumilus T4, B. pasteurii C9, Paenibacillus polymyxa E681, Pseudomonas fluorescens 89B-61, and Serratia marcescens 90-166, were evaluated for elicitation of growth promotion of wild-type and mutant Arabidopsis in vitro and in vivo. In vitro testing on MS medium indicated that all eight PGPR strains increased foliar fresh weight of Arabidopsis at distances of 2, 4, and 6 cm from the site of bacterial inoculation. Among the eight strains, IN937a and GB03 inhibited growth of Arabidopsis plants when the bacteria were inoculated 2 cm from the plants, while they significantly increased plant growth when inoculated 6 cm from the plants, suggesting that a bacterial metabolite that diffused into the agar accounted for growth promotion with this strain. In vivo, eight PGPR strains promoted foliar fresh weight under greenhouse conditions 4 weeks after sowing. To define signal transduction pathways associated with growth promotion elicited by PGPR, various plant-hormone mutants of Arabidopsis were evaluated in vitro and in vivo. Elicitation of growth promotion by PGPR strains in vitro involved signaling of brassinosteroid, IAA, salicylic acid, and gibberellins. In vivo testing indicated that ethylene signaling was involved in growth promotion. Results suggest that elicitation of growth promotion by PGPR in Arabidopsis is associated with several different signal transduction pathways and that such signaling may be different for plants grown in vitro vs. in vivo. 相似文献
12.
Xinyan Zhang Yutao Chen Xin Lin Xinyu Hong Ying Zhu Wenyang Li Wenrong He Fengying An Hongwei Guo 《植物生理与分子生物学学报》2013,(5):1661-1672
In plants, the cytokinin metabolic processes, including cytokinin biosynthesis, interconversion, inactivation, and degradation, play critical roles in the regulation of cytokinin homeostasis and plant development. Purine meta- bolic enzymes have been implied to catalyze the cytokinin interconversion in previous works. In this study, we report that Adenine Phosphoribosyl Transferase 1 (APT1) is the causal gene of the high-dose cytokinin-resistant mutants. APT1 catalyzes the cytokinin conversion from free bases to nucleotides, and is functionally predominant among the five members of the Arabidopsis Adenine Phosphoribosyl Transferase family. Loss of APT1 activity in plants leads to excess accumulation of cytokinin bases, thus evoking myriad cytokinin-regulated responses, such as delayed leaf senescence, anthocyanin accumulation, and downstream gene expression. Thus, our study defines APT1 as a key metabolic enzyme participating in the cytokinin inactivation by phosphoribosylation. 相似文献
13.
14.
15.
《Journal of Plant Interactions》2013,8(4):271-277
Abstract In spite of the simplicity of its molecules, the complex effects of benzoic acids on the regulation of plant growth are an increasingly attractive field of research to chemists and biologists. Halide substituted benzoic acids offer an excellent opportunity to explore the effect of electron withdrawing substituents (fluoro-, chloro-, bromo- and iodo-) on the response of plant growth stage. Under normal physiological conditions, benzoic acids are ionized molecules that exhibit low solubility in water. Monoethanolamine, a natural alkanolamine, was used to generate salts of monoethanolamine of halogenated para-substituted benzoic acids, new compounds with biological activity. This study reports on the biological effects of these substances at different concentrations on Arabidopsis thaliana seed germination and early seedling growth. Seed germination at 22°C, in a vertical position, under a photoperiod of 16 h light and 8 h darkness, was variable depending on the concentration of the compounds applied. Final germination percentages were similar for all treatments and control at 0.05 mM and 0.1 mM (exception p-Br BA and p-I MEASPBA). No germination occurred when seeds were treated with more than 0.5 mM. The results also revealed that the primary root length and the number of secondary roots are reduced in a concentration-dependent manner and also in relation to increasing atomic size of the substituents (F < Cl < Br < I). It is concluded that uptake rates of benzoic acid anions by roots decrease with a decrease in hydrophilic character of the anion and with an increase in molecular size. 相似文献
16.
17.
With regard to adaptation of green ash (Fraxinus pennsylvanica
Marshall) to ecological conditions in Croatia, pollen germination and pollen tube length after 2, 4 and 6 hours were examined in vitro at 10, 15, 20 and 25°C during two years 2001 and 2002. Narrow leaved ash (F. angustifolia
Vahl) pollen served as a control in 2002. The year, time and temperature, and the interaction between time and temperature were
significant for both germination percentage and pollen tube length. Interactions year × temperature and year × time were significant
for pollen tube length only. The highest germination percentage (17.86% in 2001 and 19.40% in 2002) of green ash pollen was
at 15°C after 6 hours. The pollen tube length was greatest at 20°C (393.46 μm) in 2001 and 25°C (899.50 μm) in 2002 after
6 hours. Narrow leaved ash pollen had the highest germination percentage (19.22%) at 20°C after 6 hours and was significantly
reduced at 25°C. The pollen tube length was greatest at 25°C (518.90 μm) after 6 hours. It can be concluded that green ash
pollen has satisfactory germination in ecological conditions in Croatia and that the optimum temperature for pollen germination
is higher than 20°C. 相似文献
18.
Background and Aims
The Arabidopsis thaliana pollen cell wall is a complex structure consisting of an outer sporopollenin framework and lipid-rich coat, as well as an inner cellulosic wall. Although mutant analysis has been a useful tool to study pollen cell walls, the ultrastructure of the arabidopsis anther has proved to be challenging to preserve for electron microscopy.Methods
In this work, high-pressure freezing/freeze substitution and transmission electron microscopy were used to examine the sequence of developmental events in the anther that lead to sporopollenin deposition to form the exine and the dramatic differentiation and death of the tapetum, which produces the pollen coat.Key Results
Cryo-fixation revealed a new view of the interplay between sporophytic anther tissues and gametophytic microspores over the course of pollen development, especially with respect to the intact microspore/pollen wall and the continuous tapetum epithelium. These data reveal the ultrastructure of tapetosomes and elaioplasts, highly specialized tapetum organelles that accumulate pollen coat components. The tapetum and middle layer of the anther also remain intact into the tricellular pollen and late uninucleate microspore stages, respectively.Conclusions
This high-quality structural information, interpreted in the context of recent functional studies, provides the groundwork for future mutant studies where tapetum and microspore ultrastructure is assessed. 相似文献19.
Complex I (the NADH:ubiquinone oxidoreductase) of the mitochondrial respiratory chain is a complicated, multi-subunit, membranebound assembly and contains more than 40 different proteins in higher plants. In this paper, we characterize the Arabidopsis homologue (designated as AtCIB22) of the B22 subunit of eukaryotic mitochondrial Complex I. AtCIB22 is a single-copy gene and is highly conserved throughout eukaryotes. AtCIB22 protein is located in mitochondria and the AtCIB22 gene is widely expressed in different tissues. Mutant Arabidopsis plants with a disrupted AtCIB22 gene display pleiotropic phenotypes including shorter roots, smaller plants and delayed flowering. Stress analysis indicates that the AtCIB22 mutants’ seed germination and early seedling growth are severely inhibited by sucrose deprivation stress but more tolerant to ethanol stress. Molecular analysis reveals that in moderate knockdown AtCIB22 mutants, genes including cell redox proteins and stress related proteins are significantly up-regulated, and that in severe knockdown AtCIB22 mutants, the alternative respiratory pathways including NDA1, NDB2, AOX1a and AtPUMP1 are remarkably elevated. These data demonstrate that AtCIB22 is essential for plant development and mitochondrial electron transport chains in Arabidopsis. Our findings also enhance our understanding about the physiological role of Complex I in plants. 相似文献
20.