首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
2.
3.
Since its debut in the mid 1970s, electron crystallography has been a valuable alternative in the structure determination of biological macromolecules. Its reliance on single-layered or double-layered two-dimensionally ordered arrays and the ability to obtain structural information from small and disordered crystals make this approach particularly useful for the study of membrane proteins in a lipid bilayer environment. Despite its unique advantages, technological hurdles have kept electron crystallography from reaching its full potential. Addressing the issues, recent initiatives developed high-throughput pipelines for crystallization and screening. Adding progress in automating data collection, image analysis and phase extension methods, electron crystallography is poised to raise its profile and may lead the way in exploring the structural biology of macromolecular complexes.  相似文献   

4.
5.
Recent advances in molecular and developmental genetics have provided tools for understanding evolutionary changes in the nature of the epithelial-mesenchymal interactions regulating the patterned outgrowth of the tooth primordia. Tissue recombination experiments in mice have identified the oral epithelium as providing the instructive information for the initiation of tooth development. Teeth were lost in birds for more than 80 million years ago, but despite their disappearance, a number of gene products and the requisite tissue interactions needed for tooth formation are found in the avian oral region. It is believed that the avian ectomesenchyme has lost the odontogenic capacity, whilst the oral epithelium retains the molecular signaling required to induce odontogenesis. In order to investigate the odontogenic capacity of the neural crest-derived mesenchyme and its potential activation of the avian oral epithelium, we have realized mouse neural tube transplantations to chick embryos to replace the neural crest cells of chick with those of mouse. Teeth are formed in the mouse/chick chimeras, indicating that timing is critical for the acquisition of the odontogenic potential by the epithelium and, furthermore, suggesting that odontogenesis is initially directed by species-specific mesenchymal signals interplaying with common epithelial signals.  相似文献   

6.
Waking up to sleeping sickness   总被引:2,自引:0,他引:2  
Devastating epidemics of human African trypanosomiasis are currently re-emerging in many sub-Saharan countries. In the past three decades, clinical research into this important disease has been neglected, as have urgently needed initiatives on drug development, disease surveillance and vector control. Recent impetus has aimed to provide a free supply of antitrypanosomal drugs, to develop a new orally active trypanocidal agent and to attack the tsetse vector with modern technology. In addition, pan-African initiatives to co-ordinate control efforts have begun. These all provide some hope for the future, but they might not be enough to reverse the resurgence of this deadly disease in the heart of Africa.  相似文献   

7.
8.
The investigation showed that positive and negative air ions have opposite general effects on the structure of sleep in rats. When submitted to positive air ions, the animals consecutively exhibited during sleep an EEG with increased amplitude and lowered frequency. This decrease in vigilance level is nevertheless accompanied by obvious signs of a disturbed sleep, that is: more polyphasic sleep and decrease of slow wave sleep which is the most efficient for physical restoration. The generally opposite action of negative air ions is consistent with their effects described by other authors who have studied human sleep after aeroionotherapy. The general paradigm of air ion action on sleep is in agreement with implications of recent sleep theories.  相似文献   

9.
Wilson MH  Kaminski JM  George AL 《FEBS letters》2005,579(27):6205-6209
The sleeping beauty (SB) transposon system has potential utility in gene transfer applications but lacks specificity for genomic integration and exhibits overproduction inhibition which limits in vivo activity. Targeting transposition may be possible by coupling a specific DNA binding domain to the SB transposase, but it is not known if this strategy will preserve or disrupt activity of the system. We engineered and tested chimeric SB transposases with two different human zinc finger DNA binding domain elements, Sp1 and zinc finger 202 (ZNF202). Addition of Sp1 to the C-terminus abolished transposase activity whereas N-terminal addition of either Sp1 or ZNF202 did not. Transposition activity exhibited by N-terminal chimeras was increased to levels similar to native SB through the use of a hyperactive transposase (SB12) and activating transposon mutations. Importantly, addition of DNA binding domains to the transposase N-terminus resulted in attenuation of overproduction inhibition, a major limitation of this system. These findings suggest that SB transposase chimeras may have specific advantages over the native enzyme.  相似文献   

10.
Translocation of Sleeping Beauty (SB) transposon requires specific binding of SB transposase to inverted terminal repeats (ITRs) of about 230 bp at each end of the transposon, which is followed by a cut-and-paste transfer of the transposon into a target DNA sequence. The ITRs contain two imperfect direct repeats (DRs) of about 32 bp. The outer DRs are at the extreme ends of the transposon whereas the inner DRs are located inside the transposon, 165-166 bp from the outer DRs. Here we investigated the roles of the DR elements in transposition. Although there is a core transposase-binding sequence common to all of the DRs, additional adjacent sequences are required for transposition and these sequences vary in the different DRs. As a result, SB transposase binds less tightly to the outer DRs than to the inner DRs. Two DRs are required in each ITR for transposition but they are not interchangeable for efficient transposition. Each DR appears to have a distinctive role in transposition. The spacing and sequence between the DR elements in an ITR affect transposition rates, suggesting a constrained geometry is involved in the interactions of SB transposase molecules in order to achieve precise mobilization. Transposons are flanked by TA dinucleotide base-pairs that are important for excision; elimination of the TA motif on one side of the transposon significantly reduces transposition while loss of TAs on both flanks of the transposon abolishes transposition. These findings have led to the construction of a more advanced transposon that should be useful in gene transfer and insertional mutagenesis in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号