首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Human antibodies are beginning to draw attention for use in immune gene therapy. The efficient generation of effective therapeutic monoclonal antibodies suitable for the treatment of cancers and infectious diseases would be enormously valuable. Antibody display methods are increasingly used to screen human monoclonal antibodies. Here we report the construction of a mammalian cell display method derived from a naive antibody repertoire, for which human single- chain variable fragments (scFv) have been transiently dis- played on 293T cell surfaces based on a pDisplay vector. The sizes of the current pDisplay-scFv antibody repertoires have been estimated to be 0.74 × 10^7. An immunoblot assay confirmed the expression of the scFv antibody library. The subceilular distribution of ErbB3-scFv expression plasmid facilitated the display of ErbB3 scFv on the cell membrane surface and the efficiency of the display was evaluated by fluorescence-activated cell sorting. This method of mamma- lian cell display was verified by successfully screening ErbB3 scFv candidates. A published scFv control was used to confirm the feasibility of the ErbB3 scFv screening process. Three ErbB3 scFv candidates were produced and they were found to have affinity similar to the published scFv candidate. Thus, the present screening system provided an optimal alternative for rapid acquisition of a novel candi- date scFv sequence to target genes with high affinity in vitro.  相似文献   

2.
Cheng LS  Liu AP  Yang JH  Dong YQ  Li LW  Wang J  Wang CC  Liu J 《Cell research》2003,13(1):35-48
The c-erbB-2 proto-oncogene encodes a 185kD protein p185,which belongs to epidermal growth factor receptor family.Amplification of this gene has been shown to correlate with poor clinical prognosis for certain cancer patients.The monoclonal antibody A21 which directed against p185 specifically inhibits proliferation of tumor cells overexpressing p185,hence allows it to be a candidate for targeted therapy.In order to overcome several drawbacks of murine MAb,we cloned its VH and VL genes and constructed the single-chain FV(scFv)through a peptide linker.The recombinant scFv A21 was expressed in Escherichia coli and purified by the affinity column.Subsequently it was characterized by ELISA,Western blot,cell immunohistochemistry and FACS.All these assays showed the binding activity to extracellular domain(ECD)of p185.Based on those properties of scFvA21,we further constructed the scFv-Fc fusion molecule with a homodimer form and the recombinant product was expressed in mammalian cells.In a series of subsequent analysis this fusion protein showed identical antigen binding site and activity with the parent antibody.These anti-p185 engineered antibodies have promised to be further modified as a tumor targeting drugs,with a view of application in the diagnosis and treatment of human breast cancer.  相似文献   

3.
Mammarenaviruses, including lethal pathogens such as Lassa virus and Junín virus, can cause severe hemorrhagic fever in humans. Entry is a key step for virus infection, which starts with binding of the envelope glycoprotein(GP) to receptors on target cells and subsequent fusion of the virus with target cell membranes. The GP precursor is synthesized as a polypeptide, and maturation occurs by two cleavage events, yielding a tripartite GP complex(GPC) formed by a stable signal peptide(SSP), GP1 and GP2. The unique retained SSP interacts with GP2 and plays essential roles in virion maturation and infectivity. GP1 is responsible for binding to the cell receptor, and GP2 is a class I fusion protein. The native structure of the tripartite GPC is unknown.GPC is critical for the receptor binding, membrane fusion and neutralization antibody recognition.Elucidating the molecular mechanisms underlining the structure–function relationship of the three subunits is the key for understanding their function and can facilitate novel avenues for combating virus infections. This review summarizes the basic aspects and recent research of the structure–function relationship of the three subunits. We discuss the structural basis of the receptor-binding domain in GP1, the interaction between SSP and GP2 and its role in virion maturation and membrane fusion, as well as the mechanism by which glycosylation stabilizes the GPC structure and facilitates immune evasion. Understanding the molecular mechanisms involved in these aspects will contribute to the development of novel vaccines and treatment strategies against mammarenaviruses infection.  相似文献   

4.
Multipotent mesenchymal stromal cells (MSC) can be isolated and efficiently expanded from almost every single body tissue and have the ability of self-renewal and differentiation into various mesodermal cell lineages. Moreover, these cells are considered immunologically privileged, related to a lack of surface expression of costimulatory molecules required for complete T cell activation. Recently, it has been observed that MSC are capable of suppressing the immune response by inhibiting the maturation of dendritic cells and suppressing the function of T lymphocytes, B lymphocytes and natural killer cells in autoimmune and inflammatory diseases as a new strategy for immunosuppression. The understanding of immune regulation mechanisms by MSC is necessary for their use as immunotherapy in clinical applications for several diseases.  相似文献   

5.
Targeting epidermal Langerhans cells by epidermal powder immunization   总被引:3,自引:0,他引:3  
Chen D  Payne LG 《Cell research》2002,12(2):97-104
Immune reactions to foreign or self-antigens lead to protective immunity and, sometimes, immune disorders such as allergies and autoimmune diseases. Antigen presenting cells (APC) including epidermal Langerhans cells (LCs) play an important role in the course and outcome of the immune reactions. Epidermal powder immunization (EPI) is a technology that offers a tool to manipulate the LCs and the potential to harness the immune reactions towards prevention and treatment of infectious diseases and immune disorders.  相似文献   

6.
Mitochondria are dynamic organelles which are required for maintaining cellular homeostasis. Thus, it is not surprising that irregularities in mitochondrial function result in cellular damage and are linked with neurodegenerative diseases, such as Parkinson's disease. Evidence that mitochondrial dysfunction is key to the pathogenesis of Parkinson's disease is founded in studies in post-mortem tissue from patients with Parkinson's disease, and also from genetic studies stemming from patients with familial Parkinson's disease. Whether triggered by environmental or genetic factors, mitochondrial dysfunction occurs early in the pathogenic process, and is central to Parkinson's disease pathology. As such, targeting the mitochondria to slow or halt disease progression is an attractive strategy for disease-modifying agents in Parkinson's disease. Indeed, several therapies which target the mitochondria have been investigated as neuroproteetive treatments for Parkinson's disease. This review will discuss the evidence supporting mitochondrial dysfunction in Parkinson's disease pathology as well as treatment strategies that target the mitochondria.  相似文献   

7.
B-lymphocyte stimulator (BLyS) is a member of the tumor necrosis factor (TNF) family and a key regulator of B cell response. Neutralizing single-chain fragment variable (scFv) antibody against BLyS binding to its receptor BCMA has the potential to play a prominent role in autoimmune disease therapy. A phage display scFv library constructed on pill protein of MI 3 filamentous phage was screened using BLyS.After five rounds of panning, their binding activity was characterized by phage-ELISA. Nucleotide sequencing revealed that at least two different scFv gene fragments (C305 and D416) were obtained. The two different scFv gene fragments were expressed to obtain the soluble scFv antibodies, then the soluble scFv antibodies were characterized by means of competitive ELISA and in vitro neutralization assay. The results indicated that C305 is the neutralizing scFv antibody that can inhibit BLyS binding to its receptor BCMA.  相似文献   

8.
Innate immunity offers the first line of defense against infections and other types of danger such as tumorigenesis. Its discovery provides tremendous therapeutic opportunities for numerous human diseases. Delving into the structural basis of signal transduction by innate immune receptors, our lab has recently helped to establish the new paradigm in which innate immune receptors transduce ligand-binding signals through formation of higher-order assemblies containing intracellular adapters, signaling enzymes and their substrates. These large signalosome assemblies may be visible under light microscopy as punctate structures in the μm scale, connecting to the underlying molecular structures in the nm scale. They drive proximity-induced enzyme activation, and provide a mechanism for signaling amplification by nucleated polymerization. These supramolecular signaling complexes also open new questions on their cellular organization and mode of regulation, pose challenges to our methodology, and afford valuable implications in drug discovery against these medically important pathways.  相似文献   

9.
Shen Y  Yang X  Dong N  Xie X  Bai X  Shi Y 《Cell research》2007,17(7):650-660
The approval of using monoclonal antibodies as a targeted therapy in the management of patients with B cell lymphoma has led to new treatment options for this group of patients. Production ofmonoclonal antibodies by the traditional hybridoma technology is costly, and the resulting murine antibodies often have the disadvantage of triggering human anti-mouse antibody (HAMA) response. Therefore recombinant Fab antibodies generated by the phage display technology can be a suitable alternative in managing B cell lymphoma. In this study, we extracted total RNA from spleen cells of BALB/c mice immunized with human B lymphoma cells, and used RT-PCR to amplify cDNAs coding for the κ light chains and Fd fragments of heavy chains. After appropriate restriction digests, these cDNA fragments were successively inserted into the phagemid vector pComb3H-SS to construct an immunized Fab phage display library. The diversity of the constructed library was approximately 1.94× 10^7. Following five rounds of biopanning, soluble Fab antibodies were produced from positive clones identified by ELISA. From eight positive clones, FabC06, FabC21, FabC43 and FabC59 were selected for sequence analysis. At the level of amino acid sequences, the variable heavy domains (VH) and variable light domains (VL) were found to share 88-92% and 89-94% homology with sequences coded by the corresponding murine germline genes respectively. Furthermore, reactivity with membrane proteins of the B cell lymphoma was demonstrated by immunohistochemistry and western blotting. These immunized Fab antibodies may provide a valuable tool for further study of B cell lymphoma and could also contribute to the improvement of disease therapy.  相似文献   

10.
Regulation of cytokine production during phagocytosis of apoptotic cells   总被引:11,自引:0,他引:11  
Chung EY  Kim SJ  Ma XJ 《Cell research》2006,16(2):154-161
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号