首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The role of signaling pathways including the mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3K) during viral infection has gained much recent attention. Our laboratory reported on an important regulatory role for extracellular signal-regulated kinases (ERK1/2), subfamily members of the MAPKs, during coxsackievirus B3 (CVB3) infection. However, the role of the PI3K pathway in CVB3 infection has not been well characterized. CVB3 is the most common known viral infectant of heart muscle that directly injures and kills infected cardiac myocytes during the myocarditic process. In the present study, we investigated the role of protein kinase B (PKB) (also known as Akt), a general downstream mediator of survival signals through the PI3K cascade, in regulating CVB3 replication and virus-induced apoptosis in a well-established HeLa cell model. We have demonstrated that CVB3 infection leads to phosphorylation of PKB/Akt on both Ser-473 and Thr-308 residues through a PI3K-dependent mechanism. Transfection of HeLa cells with a dominant negative mutant of Akt1 or pretreatment of wild-type HeLa cells with the specific PI3K inhibitor LY294002 significantly suppresses viral RNA expression, as reflected in diminished viral capsid protein expression and viral release. Dominant negative Akt1 and LY294002 also increase apoptosis in infected cells, which can be reversed by addition of the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk). Interestingly, blocking of apoptosis by zVAD.fmk does not reverse the viral RNA translation blockade, indicating that the inhibitory effect of dominant negative Akt1 on viral protein expression is not caspase dependent. In addition, we showed that the attachment of virus to its receptor-coreceptor complex is not sufficient for PKB/Akt activation and that postentry viral replication is required for Akt phosphorylation. Taken together, these data illustrate a new and imperative role for Akt in CVB3 infection in HeLa cells and show that the PI3K/Akt signaling is beneficial to CVB3 replication.  相似文献   

2.
Coxsackievirus B3 (CVB3) is the most common human pathogen for viral myocarditis. We have previously shown that the signaling protein p21(ras) GTPase-activating protein (RasGAP) is cleaved and that mitogen-activated protein kinases (MAPKs) ERK1/2 are activated in the late phase of CVB3 infection. However, the role of intracellular signaling pathways in CVB3-mediated myocarditis and the relative advantages of such pathways to host or virus remain largely unclear. In this study we extended our prior studies by examining the interaction between CVB3 replication and intracellular signaling pathways in HeLa cells. We observed that CVB3 infection induced a biphasic activation of ERK1/2, early transient activation versus late sustained activation, which were regulated by different mechanisms. Infection by UV-irradiated, inactivated virus capable of receptor binding and endocytosis triggered early ERK1/2 activation, but was insufficient to trigger late ERK1/2 activation. By using a general caspase inhibitor (zVAD.fmk) we further demonstrated that late ERK1/2 activation was not a result of CVB3-mediated caspase cleavage. Treatment of cells with U0126, a selective inhibitor of MAPK kinase (MEK), significantly inhibited CVB3 progeny release and decreased virus protein production. Furthermore, inhibition of ERK1/2 activation circumvented CVB3-induced apoptosis and viral protease-mediated RasGAP cleavage. Taken together, these data suggest that ERK1/2 activation is important for CVB3 replication and contributes to virus-mediated changes in host cells. Our findings demonstrate coxsackievirus takeover of a particular host signaling mechanism and uncover a prospective approach to stymie virus spread and preserve myocardial integrity.  相似文献   

3.
4.
Coxsackievirus B3 (CVB3) is one of the most common pathogens for viral myocarditis. The lack of effective therapeutics for CVB3-caused viral diseases underscores the importance of searching for antiviral compounds. Pyrrolidine dithiocarbamate (PDTC) is an antioxidant and is recently reported to inhibit ubiquitin-proteasome-mediated proteolysis. Previous studies have shown that PDTC inhibits replication of rhinovirus, influenza virus, and poliovirus. In the present study, we report that PDTC is a potent inhibitor of CVB3. Coxsackievirus-infected HeLa cells treated with PDTC showed a significant reduction of CVB3 viral RNA synthesis, viral protein VP1 expression, and viral progeny release. Similar to previous observation that divalent ions mediate the function of PDTC, we further report that serum-containing copper and zinc are required for its antiviral activity. CVB3 infection resulted in massive generation of reactive oxygen species (ROS). Although PDTC alleviated ROS generation, the antiviral activity was unlikely dependent on its antioxidant effect because the potent antioxidant, N-acetyl-L-cysteine, failed to inhibit CVB3 replication. Consistent with previous reports that PDTC inhibits ubiquitin-proteasome-mediated protein degradation, we found that PDTC treatment led to the accumulation of several short-lived proteins in infected cells. We further provide evidence that the inhibitory effect of PDTC on protein degradation was not due to inhibition of proteasome activity but likely modulation of ubiquitination. Together with our previous findings that proteasome inhibition reduces CVB3 replication (H. Luo, J. Zhang, C. Cheung, A. Suarez, B. M. McManus, and D. Yang, Am. J. Pathol. 163:381-385, 2003), results in this study suggest a strong antiviral effect of PDTC on coxsackievirus, likely through inhibition of the ubiquitin-proteasome pathway.  相似文献   

5.
Apoptosis is an innate cellular defense response to viral infection. The slow-replicating human cytomegalovirus (HCMV) blocks premature death of host cells prior to completion of the infection cycle. In this study, we report that the HCMV UL38 gene encodes a cell death inhibitory protein. A mutant virus lacking the pUL38 coding sequence, ADdlUL38, grew poorly in human fibroblasts, failed to accumulate viral DNA to wild-type levels, and induced excessive death of infected cells. Cells expressing pUL38 were resistant to cell death upon infection and effectively supported the growth of ADdlUL38. Cells infected with the pUL38-deficient virus showed morphological changes characteristic of apoptosis, including cell shrinkage, membrane blebbing, vesicle release, and chromatin condensation and fragmentation. The proteolytic cleavage of two key enzymes involved in apoptosis, namely, caspase 3 and poly(ADP-ribose) polymerase, was activated upon ADdlUL38 infection, and the cleavage was blocked in cells expressing pUL38. The pan-caspase inhibitor Z-VAD-FMK largely restored the growth of ADdlUL38 in normal fibroblasts, indicating that the defective growth of the mutant virus mainly resulted from premature death of host cells. Furthermore, cells expressing pUL38 were resistant to cell death induced by a mutant adenovirus lacking the antiapoptotic E1B-19K protein or by thapsigargin, which disrupts calcium homeostasis in the endoplasmic reticulum. Taken together, these results indicate that the HCMV protein pUL38 suppresses apoptosis, blocking premature death of host cells to facilitate efficient virus replication.  相似文献   

6.
Coxsackievirus B3 (CVB3), together with other enteroviruses of the picornavirus family, is associated with a wide variety of acute and chronic forms of human diseases. Using the murine model of CVB3-caused myocarditis, this pathogen can be detected not only in solid organs but also in different types of immune cells, preferentially in B lymphocytes. Therefore, these cells could represent a non-cardiac virus reservoir and may play an important role with regard to viral dissemination in the infected host. In addition, the infection of specific immune cells might modulate the severity of tissue injury and the pattern of virus-caused pathology in susceptible or resistant individuals. In the present study it could be demonstrated that CVB3 was capable to infect productively a certain percentage of murine CD19+ B cells. In vivo studies revealed that CVB3 invaded murine CD19+ B cells during an acute infection. Three days p. i. approximately 0.5–1.0% of these cells were productively infected. This proportion could be decreased up to 45%, if 3 days p. i. mice were intravenously treated with the pan-caspase inhibitors Z-VAD-FMK or Q-VD-OPH. These data were compared with results obtained from CVB3-infected human Raji cells.  相似文献   

7.
Nitric oxide (NO) from (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (NOC-18) induces apoptosis in human leukemia HL-60 cells. This effect was prevented by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), thereby implicating caspase activity in the process. NOC-18 treatment resulted in the activation of several caspases including caspase-3, -6, -8, and -9(-like) activities and the degradation of several caspase substrates such as nuclear lamins and SP120 (hnRNP-U/SAF-A). Moreover, release of cytochrome c from mitochondria was also observed during NOC-18-induced apoptosis. This change was substantially prevented by Z-VAD-FMK, thereby suggesting that the released cytochrome c might function not only as an initiator but also as an amplifier of the caspase cascade. Bid, a death agonist member of the Bcl-2 family, was processed by caspases following exposure of cells to NOC-18, supporting the above notion. Thus, NO-mediated apoptosis in HL-60 cells involves a caspase/cytochrome c-dependent mechanism.  相似文献   

8.
Clostridium difficile toxin A (TcdA) is one of two homologous glucosyltransferases that mono-glucosylate Rho GTPases. HT29 cells were challenged with wild-type and mutant TcdA to investigate the mechanism by which apoptosis is induced. The TcdA-induced re-organization of the actin cytoskeleton led to an increased number of cells within the G2/M phase. Depolymerization of the actin filaments with subsequent G2/M arrest, however, was not causative for apoptosis, as shown in a comparative study using latrunculin B. The activation of caspase-3, -8, and -9 strictly depended on the glucosylation of Rho GTPases. Apoptosis measured by flow cytometry was completely abolished by a pan-caspase inhibitor (z-VAD-fmk). Interestingly, cleavage of procaspase-3 and Bid was not inhibited by z-VAD-fmk, but was inhibited by the calpain/cathepsin inhibitor ALLM. Cleavage of procaspase-8 was susceptible to inhibition by z-VAD-fmk and to the caspase-3 inhibitor Ac-DMQD-CHO, indicating a contribution to the activation of caspase-3 in an amplifying manner. Although TcdA induced mitochondrial damage and cytochrome c release, p53 was not activated or up-regulated. A p53-independent apoptotic effect was also checked by treatment of HCT 116 p53−/− cells. In summary, TcdA-induced apoptosis in HT29 cells depends on glucosylation of Rho GTPases leading to activation of cathepsins and caspase-3.  相似文献   

9.
本研究探索柯萨奇病毒B3(Coxsackievirus B3,CVB3)感染引起的自噬与病毒复制之间的关系。CVB3感染HeLa细胞,并在病毒感染后6 h、8 h和10 h时检测LC3-Ⅰ蛋白、LC3-Ⅱ蛋白和p62蛋白的表达水平。结果显示CVB3病毒感染促使LC3-Ⅱ/LC3-Ⅰ比值升高,同时降低p62蛋白的表达。分别将自噬诱导剂雷帕霉素(Rapamy-cin)、自噬抑制剂3-甲基腺嘌呤(3-Methyladenine,3MA)或溶酶体抑制剂阿洛司他丁(Aloxistatin,E46D)预处理HeLa细胞2 h,CVB3感染药物处理细胞并在病毒感染6 h后收集细胞、检测CVB3病毒VP1蛋白的表达。结果显示雷帕霉素和E64D促使CVB3病毒VP1蛋白表达增加,而3MA降低CVB3病毒VP1蛋白的表达。本研究得出结论 CVB3病毒感染诱导自噬进而促进病毒复制。  相似文献   

10.
We previously demonstrated that caspase-3, an executioner of apoptosis, is activated in the pressure-induced apoptosis of murine erythroleukemia (MEL) cells (at 100 MPa). Here, we examined the pathway of caspase-3 activation using peptide substrates and caspase inhibitors. Using the substrates of caspases-8 and -9, it was found that both are activated in cells under high pressure. The production of nuclei with sub-G1 DNA content in 100 MPa-treated MEL cells was suppressed by inhibitors of caspases-8 and -9, and pan-caspase. In 100 MPa-treated cells, pan-caspase inhibitor partially prevented the cytochrome c release from the mitochondria and the breakdown of mitochondrial membrane potential. These results suggest that the intrinsic and extrinsic pathways are activated in apoptotic signaling during the high pressure-induced death of MEL cells.  相似文献   

11.
Ubiquitination is required for effective replication of coxsackievirus B3   总被引:1,自引:0,他引:1  
Si X  Gao G  Wong J  Wang Y  Zhang J  Luo H 《PloS one》2008,3(7):e2585
  相似文献   

12.
In order to study cellular and viral determinants of pathogenicity, interactions between coxsackievirus B3 (CVB3) replication and cellular protein tyrosine phosphorylation were investigated. During CVB3 infection of HeLa cells, distinct proteins become phosphorylated on tyrosine residues, as detected by the use of antiphosphotyrosine Western blotting. Two proteins of 48 and 200 kDa showed enhanced tyrosine phosphorylation 4 to 5 h postinfection (p.i.), although virus-induced inhibition of cellular protein synthesis had already occurred 3 to 4 h p.i. Subcellular fractionation experiments revealed distinct localization of tyrosine-phosphorylated proteins of 48 and 200 kDa in the cytosol and membrane fractions of infected cells, respectively. In addition, in Vero cells infected with CVB3, echovirus (EV)11, or EV12, increased tyrosine phosphorylation of a 200-kDa protein was detected 6 h p.i. Herbimycin A, a specific inhibitor of Src-like protein tyrosine kinases, was shown to inhibit virus-induced tyrosine phosphorylations and to reduce the production of progeny virions. In contrast, in cells treated with the inhibitors staurosporine and calphostin C, the synthesis of progeny virions was not affected. Immunoprecipitation experiments suggested that the tyrosine-phosphorylated 200-kDa protein in CVB3-infected cells is of cellular origin. In summary, these investigations have begun to unravel the effect of CVB3 as well as EV11 and EV12 replication on cellular tyrosine phosphorylation and support the importance of tyrosine phosphorylation events for effective virus replication. Such cellular phosphorylation events triggered in the course of enterovirus infection may enhance virus replication.  相似文献   

13.
We reported in our previously executed studies that the fermented culture broth of Antrodia salmonea (AS), a mushroom used in Taiwanese folk medicine induced reactive oxygen species (ROS)-mediated apoptosis in human ovarian carcinoma cells. In this study, we studied the anticancer efficacies of AS (0–240 μg/ml) by examining the key molecular events implicated in cell death associated with autophagy in SKOV-3 and A2780 human ovarian carcinoma cells and clarified the fundamental molecular mechanisms. Treatment of ovarian carcinoma cells with AS-induced autophagic cell death mediated by increased microtubule-associated protein LC3-II, GFP-LC3 puncta, and acidic vesicular organelle (AVO) formation. These events are linked with the activation of p62/SQSTM1, the inhibition of ATG4B, the expression of ATG7, and the dysregulation of Beclin-1/Bcl-2 (i.e., B-cell lymphoma 2). N-acetylcysteine inhibited AS-induced ROS generation, which in turn constricted AS-induced LC3 conversion, AVO formation, and ATG4B inhibition, indicating ROS-mediated autophagy cell death. In addition, the 3-methyladenine (3-MA) or chloroquine (CQ)-induced autophagy inhibition decreased AS-induced apoptosis. Additionally, apoptosis inhibition by Z-VAD-FMK, a pan-caspase inhibitor, substantially suppressed AS-induced autophagy. Furthermore, AS-inhibited HER-2/ neu and PI3K/AKT signaling pathways which were reversed by autophagy inhibitors 3-MA and CQ. Thus, A. salmonea is a potential chemopreventive agent that is capable of activating ROS-mediated autophagic cell death in ovarian carcinoma cells.  相似文献   

14.
15.
Guanylate binding protein-1(GBP-1) is an interferon-induced protein. To observe its antiviral effect against Hepatitis B virus (HBV) and Coxsackie virus B3 (CVB3), we constructed an eukaryotic expression vector of human GBP-1(hGBP-1). Full-length encoding sequence of hGBP-1 was amplified by long chain RT-PCR and inserted into a pCR2.1 vector, then subcloned into a pCDNA3.1(−) vector. Recombinant hGBP-1 plasmids and pHBV1.3 carrying 1.3-fold genome of HBV were contransfected into HepG2 cells, and inhibition effect of hGBP-1 against HBV replication was observed. Hela cells transfected with recombinant hGBP-1 plasmids were challenged with CVB3, and viral yield in cultures were detected. The results indicated that recombinant eukaryotic expression plasmid of hGBP-1 was constructed successfully and the hGBP-1 gene carried in this plasmid could be efficiently expressed in HepG2 cells and Hela cells. hGBP-1 inhibit CVB3 but not HBV replication in vitro. These results demonstrate that hGBP-1 mediates an antiviral effect against CVB3 but not HBV and perhaps plays an important role in the interferon-mediated antiviral response against CVB3. Foundation item: National Natural Science Foundation (No.30271170, No.30170889).  相似文献   

16.
Coxsackievirus B3 (CVB3) is the most common causal agent of viral myocarditis, but existing drug therapies are of limited value. Application of small interfering RNA (siRNA) in knockdown of gene expression is an emerging technology in antiviral gene therapy. To investigate whether RNA interference (RNAi) can protect against CVB3 infection, we evaluated the effects of RNAi on viral replication in HeLa cells and murine cardiomyocytes by using five CVB3-specific siRNAs targeting distinct regions of the viral genome. The most effective one is siRNA-4, targeting the viral protease 2A, achieving a 92% inhibition of CVB3 replication. The specific RNAi effects could last at least 48 h, and cell viability assay revealed that 90% of siRNA-4-pretreated cells were still alive and lacked detectable viral protein expression 48 h postinfection. Moreover, administration of siRNAs after viral infection could also effectively inhibit viral replication, indicating its therapeutic potential. Further evaluation by combination found that no enhanced inhibitory effects were observed when siRNA-4 was cotransfected with each of the other four candidates. In mutational analysis of the mechanisms of siRNA action, we found that siRNA functions by targeting the positive strand of virus and requires a perfect sequence match in the central region of the target, but mismatches were more tolerated near the 3' end than the 5' end of the antisense strand. These findings reveal an effective target for CVB3 silencing and provide a new possibility for antiviral intervention.  相似文献   

17.
Protection of cells from necrosis would be important for many medical applications. Here, we show protein transduction domain (PTD)-FNK therapeutics based on protein transduction to prevent necrosis and acute hepatic injury with zonal death induced by carbon tetrachloride (CCl4). PTD-FNK is a fusion protein comprising the HIV/Tat PTD and FNK, a gain-of-function mutant of anti-apoptotic Bcl-x(L). PTD-FNK protected hepatoma HepG2 from necrotic death induced by CCl4, and additionally, increased the apoptotic population among cells treated with CCl4. A concomitant treatment with a pan-caspase inhibitor Z-VAD-FMK (N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone), which alone could not prevent the necrosis, protected these cells from the apoptosis. When pre-injected intraperitoneally, PTD-FNK markedly reduced zonal liver necrosis caused by CCl4. Moreover, injection of PTD-FNK accompanied by Z-VAD-FMK suppressed necrotic injury even after CCl4 administration. These results suggest that PTD-FNK has great potential for clinical applications to prevent cell death, whether from apoptosis or necrosis, and organ failure.  相似文献   

18.
Nitric oxide (NO) from (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (NOC-18) induces apoptosis in human leukemia HL-60 cells. This effect was prevented by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), thereby implicating caspase activity in the process. NOC-18 treatment resulted in the activation of several caspases including caspase-3, -6, -8, and -9(-like) activities and the degradation of several caspase substrates such as nuclear lamins and SP120 (hnRNP-U/SAF-A). Moreover, release of cytochrome c from mitochondria was also observed during NOC-18-induced apoptosis. This change was substantially prevented by Z-VAD-FMK, thereby suggesting that the released cytochrome c might function not only as an initiator but also as an amplifier of the caspase cascade. Bid, a death agonist member of the Bcl-2 family, was processed by caspases following exposure of cells to NOC-18, supporting the above notion. Thus, NO-mediated apoptosis in HL-60 cells involves a caspase/cytochrome c-dependent mechanism.  相似文献   

19.
Coxsackievirus B3 (CVB3), a common human pathogen for viral myocarditis, induces a direct cytopathic effect (CPE) and apoptosis on infected cells. To elucidate the mechanisms that contribute to these processes, we studied the role of glycogen synthase kinase 3beta (GSK3beta). GSK3beta activity was significantly increased after CVB3 infection and addition of tyrosine kinase inhibitors blocked CVB3-triggered GSK3beta activation. Inhibition of caspase activity had no inhibitory effect on CVB3-induced CPE; however, blockage of GSK3beta activation attenuated both CVB3-induced CPE and apoptosis. We further showed that CVB3 infection resulted in reduced beta-catenin protein expression, and GSK3beta inhibition led to the accumulation and nuclear translocation of beta-catenin. Finally, we found that CVB3-induced CPE and apoptosis were significantly reduced in cells stably overexpressing beta-catenin. Taken together, our results demonstrate that CVB3 infection stimulates GSK3beta activity via a tyrosine kinase-dependent mechanism, which contributes to CVB3-induced CPE and apoptosis through dysregulation of beta-catenin.  相似文献   

20.
The hepatitis B virus X protein (HBx) has been implicated in the development of hepatocellular carcinoma (HCC) associated with chronic infection. As a multifunctional protein, HBx regulates numerous cellular pathways, including autophagy. Although autophagy has been shown to participate in viral DNA replication and envelopment, it remains unclear whether HBx-activated autophagy affects host cell death, which is relevant to both viral pathogenicity and the development of HCC. Here, we showed that enforced expression of HBx can inhibit starvation-induced cell death in hepatic (L02 and Chang) or hepatoma (HepG2 and BEL-7404) cell lines. Starvation-induced cell death was greatly increased in HBX-expressing cell lines treated either with the autophagy inhibitor 3-methyladenine (3-MA) or with an siRNA directed against an autophagy gene, beclin 1. In contrast, treatment of cells with the apoptosis inhibitor Z-Vad-fmk significantly reduced cell death. Our results demonstrate that HBx-mediated cell survival during starvation is dependent on autophagy. We then further investigated the mechanisms of cell death inhibition by HBx. We found that HBx inhibited the activation of caspase-3, an execution caspase, blocked the release of mitochondrial apoptogenic factors, such as cytochrome c and apoptosis-inducing factor (AIF), and inhibited the activation of caspase-9 during starvation. These results demonstrate that HBx reduces cell death through inhibition of mitochondrial apoptotic pathways. Moreover, increased cell viability was also observed in HepG2.2.15 cells that replicate HBV and in cells transfected with HBV genomic DNA. Our findings demonstrate that HBx promotes cell survival during nutrient deprivation through inhibition of apoptosis and activation of autophagy. This highlights an important potential role of autophagy in HBV-infected hepatocytes growing under nutrient-deficient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号